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Abstract—As large models demonstrate their power across a
wide range of applications, the federated learning (FL) com-
munity has also begun to seek solutions for leveraging these
large models in a communication- and computation-efficient
manner. In light of this, fine-tuning of lightweight adapters
has emerged as a promising solution for adopting large models
in FL. Another real-world challenge concerns with non-static
data streams encountered by local clients, requiring continuous
adapter fine-tuning to accommodate new tasks. In this work,
we propose a method for effective continual adapter fine-tuning
in FL (FedCAF), aimed at enhancing a client’s local learning
on new tasks. Specifically, FedCAF employs both cross-task and
cross-client knowledge transfer to generate an informed, task-
specific initialization. By learning a set of attentive weights to
combine past task models from all clients, FedCAF produces task-
specific initializations that effectively enable better and faster task
learning. On the large-scale cross-domain dataset DomainNet, we
show that FedCAF significantly outperforms several competitive
personalized and continual learning baselines under both class-
incremental and domain-incremental settings.
Index Terms—Federated Continual Learning, Adapter Fine-

Tuning, Knowledge Transfer, Task-Specific Initialization

I. INTRODUCTION

Amidst the pervasive use of computing devices and height-

ened privacy concerns in today’s big data era, federated

learning (FL) [1], [2] has emerged as a solution that enables

collaborative training across multiple clients (e.g., personal

devices, private institutions) without infringing on data privacy.

Typically, clients conduct training locally and upload their

models to a central server for aggregation. The server then

sends the aggregated model back to the clients for the next

round of updates. During this process, only model checkpoints

are communicated between parties, while the data remains

exclusively with the local clients for data privacy. However,

this FL paradigm is not without its constraints, such as limited

bandwidth and computational power on the client side.

Recently, large models have demonstrated exceptional per-

formance in a wide range of applications [3], [4]. To leverage

the powerful representations, a prevalent strategy now involves

fine-tuning a large, extensively pre-trained foundation model

(FM) [5]–[7] on the downstream tasks instead of training from

scratch. However, in the context of FL, performing full param-

eters fine-tuning of large models can be prohibitive considering

the sheer size of FMs, which can lead to high communication

Fig. 1. Illustration of adapter fine-tuning in federated continual learning
(FCL). Here, each client encounters a sequence of tasks locally over time
and continually fine-tunes the adapter for each new task.

Fig. 2. Illustrations of a) cross-task (forward) transfer, b) cross-client transfer,
c) cross-task cross-client transfer.

costs in transporting the model, and also significantly increase

the computational burdens on the clients when performing

full fine-tuning locally [8]. Fortunately, the advent of various

lightweight adapters [9]–[11] provides a more feasible solution

for tuning the large models in FL setting. An adapter is a small

neural network module that can be inserted at multiple layers

of a pre-existing foundation model. During fine-tuning, only

the adapter is made trainable to adapt the foundation model

to the downstream tasks while the bulky foundation backbone

is kept frozen, which effectively reduces the training costs. In

the context of FL, a direct adoption is to perform adapter fine-

tuning on the client side and send only the updated adapters

to the server for aggregation [12], [13].

Another key consideration in real-world applications of FL

is that clients continuously receive new data or encounter new

tasks. During this process, the local data distribution may shift

from the one learned previously [14]. This further complicates
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the problem, as data heterogeneity now exists along both

temporal and spatial dimensions. Figure 1 illustrates adapter

fine-tuning in this federated continual learning (FCL) scenario.

Here, each client encounters a sequence of tasks locally over

time and continually fine-tunes the adapter for each new task.

A handful of recent works have explored methods to handle

catastrophic forgetting in FCL [15]–[17], which mainly focus

on maintaining performance on old tasks while learning new

tasks. However, another important aspect – forward transfer

– is largely overlooked in FCL research. Instead of merely

maintaining old tasks’ performance, forward transfer aims

to improve learning of new tasks, resulting in either faster

learning or better final performance, by utilizing knowledge

from old tasks (as illustrated in Figure 2a). This can be

particularly helpful in situations where the data available for

learning a new task for a client is limited (e.g., a hospital

handling new diseases with few data points) or when a well-

adapted model needs to be generated quickly (e.g., due to

limited computational resources, or in urgent situations such

as dealing with a fast-spreading new disease).

When considering the continual problem within FL, utiliz-

ing knowledge from other clients can also be beneficial for a

client’s local task learning. Cross-client transfer (as shown in

Figure 2c) has been one of the key focuses in personalized FL

(pFL) [18]–[20] – a branch that prioritizes the client’s local

performance and shares knowledge among different clients

through the FL system to enhance personalized learning. In

this work, we aim to leverage knowledge transfer across both

tasks and clients (as shown in Figure 2c), harnessing useful

information from both temporal and spatial dimensions for

more effective client’s adapter fine-tuning on new tasks.

Generally, knowledge transfer can be achieved via distilla-

tion [21], gradient-based methods [22], or architecture-based

methods [17], [23]. In this work, we consider incorporating

useful knowledge into the model initialization to achieve

effective continual adapter fine-tuning in FL, a method we term

FedCAF. Specifically, in our approach, task-specific models

obtained at each client are sent to the server and aggregated

for cross-task knowledge amalgamation. Before the learning

of each new task, the aggregated models are sent back to the

client to undergo a fast pre-learning stage, where a set of

attentive weights to combine the aggregated models is learned

towards the client’s new task objective. The learned weights

are then used to combine the aggregated models to form the

initialization for adapter fine-tuning on the new task. On the

extensive cross-domain dataset DomainNet [24], we construct
two standard continual settings: class-incremental and domain-

incremental [25], and demonstrate that our proposed FedCAF
outperforms several competitive baselines, achieving better

and faster task learning by leveraging cross-task and cross-

client knowledge through the learned initialization.

II. RELATED WORKS

A. Foundation Model Fine-Tuning in Federated Learning

As the benefits of large models become increasingly promi-

nent, studies have been dedicated to leveraging the power of

these models in the FL setting [8], [26]. ViT-FL [27] first

showed that using transformer-based foundation models like

ViT [5] handles data heterogeneity in FL better than the con-

volutional networks. However, full parameters fine-tuning is

often not feasible in real-world FL with edge devices. Hence,

a handful of recent works have explored the potential of

adopting parameter-efficient fine-tuning methods like adapter

fine-tuning and prompt tuning in FL, where only a small

number of task-specific parameters are tuned. FedCLIP [12]

tunes and aggregates only the adapters that are applied to the

image encoder of CLIP [7]. FedPrompt [28] and PromptFL

[13] instead aggregate only the updated prompt tokens attached

to the text inputs. In this work, we further consider adapter

fine-tuning in FL with continual adaptation to new tasks.

B. Federated Continual Learning (FCL)

Similar to general continual learning [14], recent FCL works

targeting unforgetting can be broadly categorized into three

groups. Firstly, regularization-based methods like FedCurv

[29] and FLwF [16] typically maintain the performance of old

tasks and global model by explicitly constraining the model

updates with a regularization or distillation term. Replay-

based approaches preserve past knowledge by reusing past

examples while learning new tasks [30], or leveraging gen-

erative methods [15]. Architechture-based approaches, on the

other hand, assign isolated model parameters to different tasks

and reuse model parameters of past tasks [17]. Despite the

increased attention on applying FL in continual scenarios,

existing works mainly focus on maintaining performance on

old tasks, while the potential of leveraging knowledge from old

tasks to improve the current task remains largely unexplored.

This, however, could be a promising research direction for

further reducing computation costs for edge users.

C. Personalized Federated Learning (pFL)

To better handle data heterogeneity across clients, pFL

works focus on improving clients’ local performance while

leveraging relevant knowledge from other clients, shared

through the FL platform. Generally, two lines of methods have

been developed to enhance clients’ local performance. The

first approach focuses on learning a global model such that

the clients can easily fine-tune to achieve good personalized

performance from the global model [31]. Another approach

directly optimizes the local client’s models by employing

personalized aggregation of other client’s models, weighted

using distance-based metrics [18]–[20]. In this work, we also

leverage task-specific attentive weights for model aggregation.

Instead, we adopt a learning-based strategy to optimize the

attentive weights for the new task objective, which effectively

improves new task learning in the continual setting.

III. METHODOLOGY

A. Problem Formulation

In a standard FL setup with k clients and a central server,

each client i ∈ {1, · · · , k} owns its private dataset Di. Tradi-

tional FL aims to learn a global model θ that optimizes per-

formance over all k clients’ data: minθ
∑k

i=1 L(θ;Di), where
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L is some arbitrary loss function. To address the data het-

erogeneity problem (non-IID or unbalanced) across different

clients, personalized FL (pFL) adopts a more flexible objective

and learns k personalized models {θi, · · · , θk}, each optimized
for a client’s local data: min{θ1,··· ,θk}

∑k
i=1 L(θi;Di).

Federated continual learning (FCL) further assumes that

data heterogeneity exists not only across clients but also along

time dimension. That is, the clients’ data is not static and

they continuously receive new data with potentially evolving

distributions. Formally, each client i experiences a local stream
of tasks {T 1

i , T 2
i , T 3

i , · · · } and learns tasks in a sequential

manner. Each task T t
i ∈ Di of client i can be considered

as a subset drawn from the local dataset Di. Let Xt
i and

Y t
i denote the feature space and label space of T t

i data,

the tasks experienced locally by a client may have non-

overlapping label spaces, i.e., Y t
i ∩ Y j

i = ∅, ∀j < t (class-
incremental), or shifting distributions in feature space, i.e.,

PXt
i
(x) �= PXj

i
(x), ∀j < t (domain-incremental).

While most works in FCL aim to maintain performance on

all previous tasks, i.e., min{θ1
1 ,··· ,θt

k}
∑k

i=1

∑t
j=1 L(θ

j
i ; T j

i ),
in this work, we focus on learning the new task more effec-

tively. That is, at period t, we aim to learn personalized models

{θt1, · · · , θtk} on new tasks {T t
1 , · · · , T t

k } across the k clients:

min
{θt

1,··· ,θt
k}

k∑

i=1

L(θti ; T t
i ). (1)

B. Foundation Model Adapter Fine-Tuning
Generally, an adapter is a small neural network inserted at

various layers of a large foundation model. Adapter fine-tuning

involves tuning only the adapter parameters on the specific

tasks while keeping the foundation backbone frozen.
Formally, let F ∗(·) denote an off-the-shelf transformer-

based foundation model (e.g., ViT [5], CLIP [7]), and gω(·)
denote the adapter module parameterized by ω. Given an input
x, the adapter can be applied at the input level [9] or at the

layer outputs [10] (i.e., F ∗(gω(x)) or gω(F
∗(x))), or as a

parallel processor where the outputs of both functions are

combined [11] (i.e., F ∗(x)⊕gω(x)). Without loss of generality,

we represent the model of applying gω(·) to F ∗(·) as fω(·)
collectively, where only ω is trainable. Moreover, the final

classifier layer, denoted by hψ(·), also needs to be trained

to adapt to the specific task. Hence, given a new task T t
i of

client i, our goal is to tune both the adapter and the classifier
θti = (ωt

i , ψ
t
i), such that when applied to the fixed foundation

backbone, they yield the best performance on the new task.

Overall, our adapter fine-tuning objective is as follows:

min
{(ωt

i ,ψ
t
i),··· ,(ωt

k,ψ
t
k)}

k∑

i=1

L(ωt
i , ψ

t
i ; T t

i ),

where L(ωt
i , ψ

t
i ; T t

i ) :=
∑

(x,y)∈T t
i
l(hψt

i
(fωt

i
(x)), y).

(2)

C. Learning Task-Specific Initialization for Effective Contin-
ual Adapter Fine-Tuning (FedCAF)
In this section, we describe our FedCAF which learns task-

specific initialization for effective adapter fine-tuning in FL.

Overall, learning the task initialization consists of two steps

before each round of new task learning: 1) model aggregation

at server, and 2) learning the attentive weights for task-specific

initialization at local clients.
a) Model Aggregation at Server:

At each client i, the series of tasks is learned in a sequential
manner. After learning each task, the task-specific adapter and

classifier will be sent to the server for client-specific aggrega-

tion of all the seen tasks. Suppose we are at the completion

of learning task T t−1
i at client i. The task-specific adapter

and classifier θt−1
i = (ωt−1

i , ψt−1
i ) are sent to the server and

aggregated with parameters of all the seen tasks to obtain a

set of client-specific aggregated adapters {ω̄1, · · · , ω̄k} and

classifiers {ψ̄1, · · · , ψ̄k} as follows:

ω̄i =

t−1∑

j=1

pji · ωj
i , ψ̄i =

t−1∑

j=1

pji · ψj
i , (3)

where pji =
|T j

i |
∑

j′≤t−1 |T
j′
i |

is the data size weighted aggregation

weight for task j parameters of client i. This step amalgamates
cross-task knowledge within each client.

b) Learning Attentive Weights for Task-Specific Initial-
ization at Local Clients:
Before learning the new task T t

i , client i first downloads the
set of client-specific aggregated adapters {ω̄1, · · · , ω̄k} and

classifiers {ψ̄1, · · · , ψ̄k} from the server, as obtained in the

previous step. Next, we introduce two sets of learnable atten-

tive weights α = [α1, · · · , αk] ∈ R
k and β = [β1, · · · , βk] ∈

R
k, associated with the set of adapters and the set of classifiers

respectively. These attentive weights are used to combine the

client-specific aggregated models to form a good initialization

for the new task.

Finding the optimal attentive weights is non-trivial. In this

work, we propose learning the attentive weights such that the

model combined using these weights performs optimally on

the new task objective. Specifically, let ω̃(α) =
∑k

i=1 αi · ω̄i

and ψ̃(β) =
∑k

i=1 βi · ψ̄i represent the combined adapter and

classifier. The attentive weights are learned by optimizing the

combined model on the new task T t
i :

αt
i,β

t
i = argmin

α,β
L(ω̃(α), ψ̃(β); T t

i ). (4)

We apply gradient descent to update α and β as follows:

α ← α− η1(∇αω̃(α))�∇ω̃(α)L(ω̃(α), ψ̃(β); T t
i ),

β ← β − η2(∇βψ̃(β))
�∇ψ̃(β)L(ω̃(α), ψ̃(β); T t

i ),
(5)

where ∇αω̃(α) and ∇βψ̃(β) are simply [ω̄1, · · · , ω̄k] and
[ψ̄1, · · · , ψ̄k], respectively.
As a result, the learned attentive weights αt

i and βt
i de-

termines how to leverage the knowledge from other clients’

previous tasks to facilitate the learning of client i’s new

task T t
i . Note that this attentive weight learning process

is conducted before the actual task learning. To minimize

computational overhead, it is designed to be much shorter

in duration compared to the actual task learning (e.g., it is

performed for only 1 or 2 epochs in our experiments).
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Fig. 3. Overview of FedCAF. Each client sends the task-specific adapters
to the server for aggregation with all the seen tasks. Before learning a new
task, the client downloads the set of client-specific adapters from the server
and learns the attentive weights α by optimizing on the new task. These
weights are then used to combine the adapters to form a good initialization
for fine-tuning new task. The process is the same for the classifier.

With the learned attentive weights, we obtain the informed

initializations for the adapter and the classifier as ω̃t
i = ω̃(αt

i)
and ψ̃t

i = ψ̃(βt
i), respectively. And with that, standard adapter

fine-tuning on new task T t
i proceeds:

min
ωt

i ,ψ
t
i←ω̃t

i ,ψ̃
t
i

L(ωt
i , ψ

t
i ; T t

i ). (6)

Figure 3 shows an overview of FedCAF. For simplicity,
we only show the process for adapter here. The process for

classifier is exactly the same.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate our

FedCAF for generating the initialization for new task learning.

In the following, we first introduce our experimental setup and

then discuss the experimental results.

A. Experimental Setup

a) Dataset and Settings:
We conduct our experiments on the large-scale cross-

domain DomainNet dataset [24]. It comprises real-world im-

ages from 345 classes across 6 different domains: Clipart,

Infograph, Painting, Quickdraw, Real, and Sketch. We sample

10% for our experiments, resulting in around 60k examples.

We construct tasks to simulate two continual learning set-

tings: class-incremental and domain-incremental [25].

In the class-incremental setting, clients gradually learn new

classes from new tasks (i.e., tasks have non-overlapping label

spaces). To simulate this, we assign each of the 6 domains to a

client and divide the 345 classes of images into 23 tasks, with

15 classes per task. Consequently, we have 6 clients learning

23 class-incremental tasks locally. This setting is characterized

by domain skew across clients and label skew across tasks.

In the domain-incremental setting, clients learn new do-

mains from new tasks (i.e., tasks have different feature distri-

butions). To simulate this, we assign 15 classes to each client

who learns the 6 domains of the images associated with these

15 classes sequentially. This results in 23 clients each learning

6 domain-incremental tasks. This setting is characterized by

label skew across clients and domain skew across tasks.
b) Implementation details:

For the foundation model, we use ViT-B/16 [5] pre-trained

on ImageNet21k. For the adapter, we adopt LoRA [11] which

applies low-rank decomposition to the Q and V matrices of

each attention block. We set the rank to be 48. All fine-tuning

is conducted on NVIDIA A100 GPUs with 40GB memory.
For each new task, we fine-tune the adapter and the 15-way

classifier for 20 epochs with a learning rate 0.005. Note that

global communication occurs only at the start of each new task

learning for sharing the aggregated adapters and classifiers.
For our FedCAF, the attentive weights α and β are learned

for 1 epoch at the start of each task learning, with initial value

as 1
k . We set the learning rates for both to be 0.05.

c) Baselines and Metrics:
To evaluate the effectiveness of our FedCAF initialization,

we first introduce five naive baselines: 1) Rand initializes the

adapter and the classifier (denoted collectively as θ for sim-

plicity) randomly for each new task; 2) GlobalAvg aggregates

θ of all the seen tasks from all clients to form the initialization;

3) ClientAvg aggregates θ of all the seen tasks of a client to

create the initialization for that client’s new task; 4) FedAvg
aggregates θ from only the last tasks of all clients to form the

initializations; 5) ClientCont directly uses θ from the last task

of the client as the initialization for that client’s new task.
We further include 3 pFL methods modified for our contin-

ual setting and 2 FCL methods. For the pFL baselines, Per-
FedAvg [31] aggregates a global initialization that optimizes

performance after one step gradient descent; FedFomo [19]

employs personalized aggregation weights to generate the

initialization based on the difference in loss of a client’s model

on its local data and those of the others; and FedAMP [18]

generates aggregation weights based on the distance between

model parameters. For a fair comparison, all the pFL methods

are used to generate the initialization only before the actual

task learning. For the FCL baselines, FedCurv [29] constrains

model updates with a regularization term, while FLwF [16]

regularizes model updates via distillation. Note that like most

of the existing FCL works, both FedCurv and FLwF are

designed to defy forgetting of old tasks.
To evaluate the performance of new task learning, we

employ two metrics: the final accuracy (ACC), attained at

the last epoch of task learning, and the learning curve area

(LCA), computed by averaging the accuracy across all epochs

throughout the task learning [32]. These two metrics effec-

tively measure how well and how quickly a task is learned. For

each compared method, we run 3 trials with different random

seeds and report the mean and standard deviation.

B. Experimental Results
Tables I and II present the results for class-incremental and

domain-incremental settings respectively. The ACC and LCA

reported are averaged over all tasks and all clients. For all

experiments, we conduct 3 trials and report the mean and SD.

We also report the improvements over the Rand baseline.

825



Fig. 4. The sequential learning performance of 23 class-incremental tasks averaged over
6 clients.

Fig. 5. The sequential learning performance of 6
domain-incremental tasks averaged over 23 clients.

TABLE I
TASK LEARNING PERFORMANCE FOR CLASS-INCREMENTAL SETTING.

RESULTS ARE AVERAGED OVER ALL TASKS AND ALL CLIENTS.

Methods
Class-Incremental DomainNet

ACC Improv. LCA Improv.

Rand 66.53 ± 0.24 – 60.58 ± 0.20 –

Naive
Baselines

GlobalAvg 67.35 ± 0.16 0.82 61.93 ± 0.01 1.35
ClientAvg 66.60 ± 0.12 0.07 59.39 ± 0.21 -1.19
FedAvg 67.28 ± 0.12 0.75 61.64 ± 0.03 1.06

ClientCont 63.57 ± 0.07 -2.96 54.98 ± 0.06 -5.60

pFL
Methods

Per-FedAvg 67.31 ± 0.04 0.78 62.22 ± 0.07 1.64
FedFomo 67.17 ± 0.13 0.64 61.95 ± 0.01 1.37
FedAMP 66.53 ± 0.10 0.00 60.08 ± 0.02 -0.50

FCL
Methods

FedCurv 63.71 ± 0.01 -2.82 54.81 ± 0.13 -5.77
FLwF 63.87 ± 0.07 -2.66 54.86 ± 0.06 -5.72

FedCAF(Ours) 68.36 ± 0.02 1.83 64.96 ± 0.03 4.38

TABLE II
TASK LEARNING PERFORMANCE FOR DOMAIN-INCREMENTAL SETTING.

RESULTS ARE AVERAGED OVER ALL TASKS AND ALL CLIENTS.

Methods
Domain-Incremental DomainNet

ACC Improv. LCA Improv.

Rand 65.76 ± 0.22 – 59.83 ± 0.20 –

Naive
Baselines

GlobalAvg 66.23 ± 0.31 0.47 60.96 ± 0.18 1.13
ClientAvg 67.21 ± 0.13 1.45 63.53 ± 0.06 3.70
FedAvg 66.42 ± 0.15 0.66 61.32 ± 0.10 1.49

ClientCont 67.32 ± 0.11 1.56 63.64 ± 0.06 3.81

pFL
Methods

Per-FedAvg 66.26 ± 0.35 0.50 61.06 ± 0.17 1.23
FedFomo 67.31 ± 0.21 1.55 63.68 ± 0.15 3.85
FedAMP 67.21 ± 0.16 1.45 63.48 ± 0.11 3.65

FCL
Methods

FedCurv 67.35 ± 0.16 1.59 63.64 ± 0.10 3.81
FLwF 67.10 ± 0.09 1.34 63.55 ± 0.07 3.72

FedCAF(Ours) 67.75 ± 0.02 1.99 64.81 ± 0.10 4.98

C. Class-Incremental Results

Firstly, we examine the class-incremental performance as

shown in Table I. We observe that GlobalAvg and FedAvg,
which have access to cross-client knowledge, generally out-

perform ClientAvg and ClientCont. This underscores the im-

portance of leveraging global information to generate a good

initialization. The ClientCont baseline performs especially

poorly, as using a 15-way classifier from a completely different

task is not helpful for learning another task. ClientAvg, which

aggregates a set of different classifiers, alleviates this problem.

For the pFL baselines, we notice that Per-FedAvg performs

similarly to GlobalAvg in terms of ACC but with a slightly

higher LCA. This is because Per-FedAvg employs a global ini-

tialization that optimizes for better personalized performance

after a one-step gradient update, resulting in a faster learning

process. As a personalized aggregation approach, FedFomo
outperforms FedAMP, which implies that assigning weights

to models based on local task performance is more effective.

For the FCL methods, FedCurv and FLwF, we observe that

they perform poorly in new task learning. This is because

they are both designed to maintain the performance of old

tasks instead of optimizing for new task. The results indicate

that merely maintaining performance on old tasks does not

necessarily lead to knowledge transfer to new tasks. Specially

designed mechanism is required to achieve effective transfer.

Finally, for our proposed FedCAF, we observe that it sig-

nificantly outperforms all the baselines. This can be attributed

to its ability to achieve a fine balance between GlobalAvg
and ClientAvg by automatically learning the attentive weights.

Moreover, it proves superior to the strong personalized ag-

gregation baseline FedFomo, demonstrating the advantages of

directly optimizing the attentive weights for the new task

objective. Figure 4 shows the sequential learning performance

of 23 class-incremental tasks for 6 clients. Here, we compare

FedCAF with Rand, GlobalAvg and ClientAvg. We can see

that it consistently learns better and faster than the baselines.

D. Domain-Incremental Results

For the domain-incremental results in Table II, we see that

the client-specific methods ClientAvg and ClientCont perform
better than GlobalAvg and FedAvg. This is because in this

setting, each client learns the same 15-way classification task.

Reusing classifiers of the same client benefits learning of new

task which involves the same 15 classes from a new domain.

For the pFl and FCL baselines, most of the trends observed

here are similar to those in the class-incremental setting.

However, here we observe better performance for FedFomo
and FedAMP, as they probably assign greater weights to

models that are similar to a client’s local model, achieving

similar effects to ClientAvg and ClientCont methods. For

FedCurv and FLwF, the results are also more satisfactory here
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for the same reason, as drawing the updated model closer to

the previous task model of the same client helps retain the

useful information from the same classification task.

Nevertheless, our proposed FedCAF still performs the best

in this challenging setting, implying the effectiveness of

learning-based cross-client transfer in this cross-client label-

skew scenario, where there seems to be no shareable knowl-

edge among clients. Figure 5 shows the sequential learning

performance of 6 domain-incremental tasks for 23 clients.

V. CONCLUSION

In this work, we propose FedCAF for effective federated

continual fine-tuning of adapters. This method incorporates

cross-task and cross-client knowledge into the task-specific

initialization by learning a set of attentive weights. On Do-
mainNet, we demonstrate the effectiveness of our method

under two standard continual settings.
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