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Abstract— In healthcare, federated learning (FL) is a
widely adopted framework that enables privacy-preserving
collaboration among medical institutions. With large foun-
dation models (FMs) demonstrating impressive capabili-
ties, using FMs in FL through cost-efficient adapter tun-
ing has become a popular approach. Given the rapidly
evolving healthcare environment, it is crucial for individ-
ual clients to quickly adapt to new tasks or diseases by
tuning adapters while drawing upon past experiences. In
this work, we introduce Federated Knowledge-Enhanced
Initialization (FedKEI), a novel framework that leverages
cross-client and cross-task transfer from past knowledge to
generate informed initializations for learning new tasks with
adapters. FedKEI begins with a global clustering process at
the server to generalize knowledge across tasks, followed
by the optimization of aggregation weights across clus-
ters (inter-cluster weights) and within each cluster (intra-
cluster weights) to personalize knowledge transfer for each
new task. To facilitate more effective learning of the inter-
and intra-cluster weights, we adopt a bi-level optimiza-
tion scheme that collaboratively learns the global intra-
cluster weights across clients and optimizes the local inter-
cluster weights toward each client’s task objective. Exten-
sive experiments on three benchmark datasets of different
modalities, including dermatology, chest X-rays, and retinal
OCT, demonstrate FedKEI’s advantage in adapting to new
diseases compared to state-of-the-art methods.

Index Terms— Federated Learning, New Disease Adapta-
tion, Foundation Model Adapter Tuning, Knowledge Trans-
fer, Learned Initialization
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FEDERATED learning (FL) has gained traction in health-
care by enabling collaborative model training across

institutions without sharing sensitive data [1]. With large foun-
dation models (FMs) demonstrating strong performance across
various tasks [2], [3], integrating FMs into FL presents new
opportunities for medical imaging [4]. A common approach
involves fine-tuning pre-trained FMs for downstream tasks
in FL [5], [6]. To mitigate the substantial computation and
communication overhead of full fine-tuning, recent methods
adopt federated adapter tuning [7], which updates and trans-
mits only lightweight adapters between the server and clients
[8]. This approach enables efficient use of FMs in FL, making
it particularly suitable for resource-constrained clients such as
small clinics [9], [10].

In dynamic healthcare environments, FL clients often face
previously unseen diseases, such as rare conditions or emerg-
ing outbreaks like COVID-19 [11], [12]. To remain effec-
tive, they must continually adapt to new diagnostic tasks
while leveraging prior knowledge. Federated continual learn-
ing (FCL) supports this by enabling clients to learn from
evolving local task streams without sharing sensitive data [13].
Traditional FCL methods focus on mitigating forgetting within
a single shared model, under the constraint that assigning a
separate model per task would incur large storage costs [14],
[15]. However, this constraint is eased in federated adapter
tuning, which fine-tunes lightweight adapters on a fixed pre-
trained FM [7], [8]. Since adapters are small (e.g.,<1% of
ViT with LoRA), assigning one per task is feasible, shifting
the focus from “unforgetting” to knowledge transfer for better
new task adaptation [16]. We adopt this setup by assigning
a unique adapter per task and addressing the underexplored
challenge of improving adaptation to new tasks.

Transferring knowledge from related medical conditions is
crucial for quickly adapting to new diseases. For example,
insights from SARS can inform COVID-19 treatment due
to their shared coronavirus origin [17], [18]. Yet, individual
hospitals often have limited, heterogeneous data. FCL enables
both temporal transfer (from past tasks) and spatial transfer
(from other clients), broadening each client’s knowledge base.
As shown in Figure 1, traditional FL (top left) transfers
knowledge spatially across clients, and CL (bottom left) trans-
fers knowledge temporally across tasks. Our FCL approach
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Fig. 1. Illustration of spatial-temporal knowledge transfer in FCL.
Left: traditional FL enables spatial transfer across clients (top), and
CL enables temporal transfer across tasks (bottom). Right: our FCL
framework unifies both by pooling task-specific modules from all clients
at the server. When a new disease arises, each client adapts more
effectively by drawing on diverse knowledge from this shared pool.

(right) combines both: at each step, clients upload task-specific
modules (e.g., adapters) to a shared knowledge pool. When
encountering a new disease, a client retrieves relevant knowl-
edge—including its own and others’ past experiences—for
better adaptation. For example, when diagnosing Atelectasis, a
hospital lacking sufficient prior data may benefit from others’
clearer or more diverse cases of related conditions (e.g.,
Effusion or Pneumothorax), improving learning via shared
visual patterns like lung collapse or opacity [19].

In this work, we aim to explore the potential of leveraging
spatial-temporal transfer for learning new diseases with FM
adapter tuning. To this end, we propose a novel FCL frame-
work, termed Federated Knowledge-Enhanced Initialization
(FedKEI), which selectively transfers valuable knowledge
across clients and tasks to construct informed initializations
for the adapters to learn new tasks. Specifically, the adapter
and head tuned locally for each task (referred to as the
task-specific modules) are sent to server, where a pool of
task-specific modules is accumulated over time. Our FedKEI
performs two key steps to effectively extract and transfer
knowledge from the stored task-specific modules to improve
new task learning: (1) global clustering of task-specific mod-
ules to generalize knowledge across tasks and clients, and (2)
learning the aggregation weights across clusters (i.e., inter-
cluster weights) and within each cluster (i.e., intra-cluster
weights)—collectively referred to as the bi-level weights—to
aggregate the task-specific modules. The resulting aggregated
modules are then used to initialize the adapter and head for
fine-tuning on new tasks. By this means, knowledge from
previous tasks is selectively transferred and integrated into
informed initializations to enhance new task learning.

To facilitate effective learning of the bi-level aggregation
weights, we adopt a bi-level optimization scheme where intra-
cluster weights are learned at the server to enhance inter-
cluster weight learning at the client. Inspired by meta-learning
[20], this approach ensures that the cluster-specific modules,
formed using shared intra-cluster weights, are more informa-
tive and capable of supporting the learning of local inter-
cluster weights, leading to more effective initializations.

Overall, we summarize our main contributions as follows:
• We propose a novel FCL framework, FedKEI, for improv-

ing adaptation to new diseases. The framework focuses on
integrating the spatial-temporal knowledge transfer into a
more informed initialization for FM adapter tuning.

• In our framework, we employ global clustering and bi-
level aggregation learning to achieve effective knowledge
transfer, where the former generalizes knowledge across
different tasks and clients, and the latter selectively per-
sonalizes knowledge transfer for each task.

• To facilitate more effective bi-level aggregation weight
learning, we introduce a novel bi-level optimization
scheme to learn the global intra-cluster weights such that
the subsequent learning of local inter-cluster weights is
enhanced for generating effective initializations.

• We extensively evaluate FedKEI on three large-scale
FCL datasets across different modalities and show that it
achieves better performance in adapting to new diseases
compared to state-of-the-art methods.

II. RELATED WORK

A. Task Adaptation in Federated Learning
FL has recently gained popularity for supporting privacy-

preserving collaboration among clients [1], [21]. Traditional
FL algorithms, such as FedAvg [22], FedProx [23], and
SCAFFOLD [24], focus on learning a global model that per-
forms well across all clients. While FedProx and SCAFFOLD
introduce mechanisms to mitigate data heterogeneity—such as
proximal regularization and control variates—they still follow
a one-model-fits-all paradigm. This paradigm often falls short
in scenarios with severe client heterogeneity and dynamic task
distributions. Personalized federated learning (PFL) addresses
this by developing personalized models tailored to each client’s
local objective, including meta-learning–based approaches,
which learn a global initialization to facilitate client-side adap-
tation [25], and personalized aggregation approaches, which
learn client-specific aggregation weights optimized towards lo-
cal objective [26], [27]. However, most existing PFL methods
assume static client objectives and struggle with evolving tasks
or shifting data, limiting their effectiveness in dynamic settings
requiring continual knowledge transfer.

FCL is a recent approach focused on continual task learn-
ing at clients, primarily aiming to mitigate forgetting. FCL
methods can be broadly categorized into three classes. First,
regularization-based approaches retain knowledge of previous
tasks by constraining model updates, through explicit regular-
ization terms or via knowledge distillation [14], [15]. Second,
replay–based methods store raw samples from previous tasks
or generate pseudo-examples to be used alongside new task
data during training [28]. Third, architecture-based approaches
assign isolated model parameters to different tasks to preserve
past knowledge [13]. Recently, [29] explicitly identified the
issue of spatial-temporal catastrophic forgetting in FCL and
addressed it with a gradient-free approach. Despite recent
developments, most FCL methods mainly focus on preserving
performance on past tasks and preventing forgetting, with
limited exploration of how knowledge from previous tasks can
be harnessed to improve adaptation to new ones.

Another related branch is federated domain generaliza-
tion (FDG) [30], which aims to develop federated models
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that generalize well to unseen domains or tasks by learning
domain-invariant features from clients with distribution shifts.
ELCFS [31] focuses on client-side learning by encouraging
unbiased local training through amplitude spectrum transfer
across clients, enriching local distributions for more effec-
tive domain-invariant feature extraction. In contrast, FedGA
[32] improves generalizability through server-side aggregation,
adjusting client weights based on their generalization gaps.
Caldarola et al. [33] proposes a hybrid strategy, applying
sharpness-aware minimization for local training at the client
side and stochastic weight averaging for model aggregation
at the server. While effective, these methods address only
inter-client domain shifts, assuming static local distributions.
Moreover, FDG develops a generalized global model without
personalization for heterogeneous local tasks. In contrast, our
framework transfers knowledge across both clients and time,
tailored specifically to improve learning for individual tasks.

B. FM Adapter Tuning in Federated Learning

With the rise of powerful FMs [2], [3], there has been
growing interest in integrating FMs into FL [4]. Instead of
full fine-tuning, tuning only the lightweight adapters provides
a cost-efficient way for leveraging large FMs in FL, incurring
only minimal client computation and communication [8].

Among the earliest works, FedCLIP [9] demonstrates that
adapter tuning outperforms full fine-tuning in FL by better
retaining the rich priors of pre-trained CLIP [3], benefiting
data-scarce local tasks. Building on this, FACMIC [34] applies
adapter tuning of CLIP in the medical domain, incorporat-
ing a domain adaptation loss to mitigate client distribution
shifts. In contrast, FLoRA [35] and FFA-LoRA [36] focus
on integrating and aggregating the existing LoRA adapters
on pre-trained LLMs. FLoRA introduces a stacking-based
aggregation strategy, while FFA-LoRA proposes to fine-tune
only the zero-initialized matrix of LoRA to address noise
during convergence. While these studies mainly concern with
better implementation of adapter tuning in standard FL, our
work focuses on the continual setting, leveraging knowledge
transfer to improve adaptation to new tasks.

C. Federated and Continual Learning in Medical Imaging

FL has gained traction in medical imaging, with vari-
ous strategies to address data heterogeneity and client-side
adaptation. Feng et al. [37] propose a shared encoder with
client-specific decoders for MR image reconstruction. Xu et
al. [38] introduce an ensemble framework combining global
and personalized models with a model selector to handle
client shift. Li et al. [39] apply domain adaptation with
noise-augmented fMRI data and a domain discriminator to
reduce inter-client distribution gaps. ELCFS [31], a federated
domain generalization method designed for medical image
segmentation, employs a boundary-oriented episodic learning
scheme to simulate domain shifts at training.

CL has also been explored in healthcare. Wu et al. [40]
mitigate forgetting in class-incremental nuclei segmentation

through regularization. Amrollahi et al. [41] enable center-
incremental sepsis prediction using a hybrid of weight reg-
ularization and representation replay. Zheng et al. [42] pro-
pose asynchronous federated continual learning with reinforce-
ment learning and selective experience replay for modality-
incremental landmark localization in 3D imaging.

Despite recent advances, few works unify FL and CL to
enable spatial-temporal knowledge transfer across clients and
tasks in the medical domain. Additionally, most efforts focus
on mitigating forgetting, with limited emphasis on improving
new task adaptation, especially for FM adapter tuning.

III. METHODOLOGY

A. Preliminaries
1) Problem Setup: A standard FL setup involves N clients

and a central server, where each client i ∈ [N ] owns a local
dataset Di. In real-world scenarios, the local data distribution
at each client is not static, i.e., each client i continuously
encounters a local stream of tasks {T 1

i , T 2
i , · · · }, where each

task T t
i ∈ Di is a subset of Di. To study the problem of new

disease learning, we define each task to have a label set (i.e.,
disease classes) that differs from all the previously seen tasks
of the same client, i.e., Yt

i ̸= Y
j
i ,∀j < t, where Yt

i denotes
the label set of T t

i of client i. To reflect realistic medical
scenarios such as emerging diseases, we assume that clients
observe largely similar tasks at a given time t.

In this work, we focus on improving adaptation to new tasks
by leveraging knowledge from past tasks. As sharing clients’
local data is prohibited in FL, we instead utilize the task-
specific models learned from previous tasks to guide current
learning. Formally, at time t, given a new task T t

i for each
client i, we aim to learn task-specific models {θti}Ni=1 by
utilizing the set of prior task-specific models Θt−1 = {θji |
i ∈ [N ], j ∈ [t − 1]} obtained from all clients. The learning
objective is defined as follows:

min{θt
1,··· ,θt

N}
∑N

i=1 LT t
i
(θti ; Θ

t−1), (1)

where LT t
i

denotes a classification loss (e.g., cross-entropy)
on the current task T t

i , augmented by knowledge distilled or
transferred from relevant past models in Θt−1.

2) Federated Adapter Tuning for New Task Adaptation:
Adopting adapter tuning in FL offers a computation- and
communication-efficient way for clients to harness the power
of FMs when adapting to new tasks. Let F ∗(·) represent
a fixed, pre-trained FM backbone (e.g., ViT [2]) retained
locally at each client. We attach to it an adapter module
gω(·), parameterized by ω (e.g., LoRA [8]). Together, the
backbone and adapter form a composite feature extractor:
fω(·) = F ∗(gω(·)). Each client also maintains a classification
head hϕ(·), parameterized by ϕ. Thus, the learnable parameters
of the new task T t

i consist of the adapter and the classification
head: θti = (ωt

i , ϕ
t
i). To leverage prior knowledge of the past

task-specific modules Θt−1 = {θji | i ∈ [N ], j ∈ [t − 1]},
where each θji = (ωj

i , ϕ
j
i ), the federated adapter tuning loss

LT t
i
(θti ; Θ

t−1) for each new task T t
i is defined as:

LT t
i
(θti ; Θ

t−1) =
∑

(x,y)∈T t
i
ℓ
(
hϕt

i
(fωt

i
(x)), y|Θt−1

)
. (2)
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Fig. 2. An overview of FedKEI. After local fine-tuning on each new task, the task-specific modules (i.e., the adapter and head) are sent to the server,
where global clustering is applied to all stored modules. When new tasks arrive, the server and clients collaboratively learn bi-level aggregation
weights—the local inter-cluster weights αt

i and global intra-cluster weights βt
c—to combine the stored task-specific modules, optimizing towards

new tasks’ objectives through a bi-level optimization process. Specifically, at each outer-loop step, cluster-specific modules θc are sent to clients,
which perform inner-loop updates of αt

i by optimizing on local tasks. Gradients w.r.t. θc are then back-propagated through the inner-loop and
returned to the server to update βt

c (for simplicity, we illustrate this process using the adapter, though the same applies to the head). The final
aggregated module θ̃t

i , computed using the learned bi-level weights, is used to initialize learning for the new task.

B. Overview of Federated Knowledge-Enhanced
Initialization (FedKEI) Framework

To achieve the objective of improving adaptation to new
tasks as described in (2), we propose FedKEI — a frame-
work that leverages global clustering and bi-level aggregation
weight learning to generate informed initializations for the
adapter and head for fine-tuning on new tasks. An overview
of FedKEI is shown in Figure 2.

Generally, when a client encounters a new task, it locally
fine-tunes the adapter and head (with the FM backbone
fixed) and sends the task-specific modules to the server.
These modules are accumulated over time into a knowledge
pool, which can be leveraged for knowledge transfer to new
tasks. Before local fine-tuning on a new task, the server
performs two steps: (1) applies a global clustering algorithm
to generalize knowledge across tasks (Section III-C); and (2)
optimizes bi-level aggregation weights—global intra-cluster
and personalized inter-cluster—to tailor knowledge transfer.
This is done through a bi-level optimization scheme involving
communication of cluster-specific modules and local task
gradients between server and clients (Section III-D). The
modules obtained by aggregating with the learned bi-level
weights are used as initializations for adapter tuning on new
tasks, effectively incorporating useful knowledge across time
and space to facilitate new task learning (Section III-E).

In what follows, we describe each process in detail.
Since our framework applies similarly to both adapters and
heads—with clustering and weight learning performed sepa-
rately in their respective parameter spaces—we use the term
“module” and the symbol θ to refer to both the adapter and
the head throughout the description.

C. Global Clustering of Task-Specific Modules
After local fine-tuning for each task at client side, the

learned task-specific modules are sent to the server. Suppose
we are at time t, the collected task-specific modules are up to
time t− 1, denoted by Θt−1 = {θji |i ∈ [N ], j ∈ [t− 1]}. We
apply a clustering algorithm (e.g., k-means++ [43]) on Θt−1

to group task-specific modules with similar patterns. This
serves to encourage generalization of related features among
diverse tasks and facilitate knowledge transfer [44]–[46]. After
that, task-specific modules belonging to the same cluster are
aggregated to form a set of cluster-specific modules.

Formally, let M = N × (t − 1) denote the total number
of task-specific modules in Θt−1, and K denote the number
of clusters. The cluster assignment outcome is denoted by a
binary matrix B ∈ {0, 1}K×M , where Bc,j indicates whether
the j-th task-specific module is assigned to cluster c. The
cluster-specific module θc corresponding to cluster c ∈ [K]
is obtained by aggregating the task-specific modules assigned
to that cluster:

θc =
∑M

j=1
Bc,j∑M

j′=1
Bc,j′

· θj , ∀c ∈ [K]. (3)

D. Bi-Level Aggregation Weight Learning
Given K cluster-specific modules, each client must deter-

mine a good initialization for learning a new task. A straight-
forward approach is to select the best-performing cluster
module [44], but this overlooks useful information from other
clusters. To address this, we propose a learning-based strategy
that personalizes transfer from the clustered knowledge to each
new task [27]. Specifically, we learn inter-cluster weights to
combine cluster-specific modules and intra-cluster weights to
refine aggregation within each cluster—together forming the
bi-level aggregation weight learning. The inter-cluster weights
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assign importance to each cluster based on its utility for the
new task, while the intra-cluster weights calibrate aggregation
within each cluster to produce improved cluster-specific mod-
ules for learning personalized inter-cluster weights.

Inspired by meta-learning, which optimizes shared compo-
nents (e.g., initializations or optimizers) to improve learning
across tasks [20], we adopt a bi-level optimization scheme
to learn these aggregation weights. We treat the intra-cluster
weights as shared components across all clients’ new tasks at
time t and optimize them to enhance the learning of inter-
cluster weights for individual tasks. Following the episodic
learning paradigm of meta-learning, we optimize the global
intra-cluster weights in the outer loop (at the server) and
update the local inter-cluster weights in the inner loop (at the
clients). We next describe the optimization procedure for both
the inter- and intra-cluster weights.

1) Inner Updates of Local Inter-Cluster Weights: The inter-
cluster weights are updated locally at the client side to directly
optimize for the performance of the aggregated module on
the new tasks, using the K cluster-specific modules {θc}Kc=1

received from the server.
Recalling Section III-C, the cluster-specific module θc

is obtained by aggregating the M task-specific modules
collected at the server with intra-cluster weights βc =
[βc,1, · · · , βc,M ] ∈ RM , whose values are initialized based
on the cluster assignment from the global clustering process,
βc ← Bc,:/

∑M
j=1 Bc,j ∈ RM . The cluster-specific module θc

computed using βc is represented as:

θc(βc) =
∑M

j=1 βc,j · θj , ∀c ∈ [K]. (4)

Let α = [α1, · · · , αK ] ∈ RK denote the inter-cluster weights
of aggregating the K cluster-specific modules, initialized by
1
K . The final aggregated module is obtained by:

θ̃(α,β) =
∑K

c=1 αc · θc(βc). (5)

To adapt to the new task T t
i of client i, we update the inter-

cluster weight α by optimizing θ̃(α,β) on the task objective
LT t

i
, while keeping β fixed. That is, given the set of cluster-

specific modules (obtained with some fixed β) received from
the server, we perform one or several steps of updates on
α at the client, which we refer to as the inner-loop updates.
Formally, when performing one inner-loop update, the inter-
cluster weight αt

i for task T t
i is obtained by:

αt
i = α− η1∇αLT t

i
(θ̃(α,β)), (6)

where η1 is the inner-loop learning rate. The gradient ∇αLT t
i

is computed as (∇αθ̃)
⊤∇θ̃LT t

i
, where ∇αθ̃ is a matrix

with the cluster-specific modules [θ1, · · · , θK ] as the column
vectors (from (5)). For brevity, we describe our method with
a single step of inner-loop update, but the approach can easily
extend to multiple updates.

2) Outer Updates of Global Intra-Cluster Weights: The intra-
cluster weights β = [β1, · · · ,βK ] determine how the cluster-
specific modules are formed. To ensure that the cluster-specific
modules are optimized for learning the new task at time t
across all clients, we learn the intra-cluster weights by (1)
collaboratively optimizing them across all clients to enhance

generalizability, and (2) ensuring that the resulting cluster-
specific modules are optimal for learning the downstream
inter-cluster aggregation.

The two objectives can be achieved by optimizing the intra-
cluster weights collaboratively in the outer loop such that the
inter-cluster weights updated for each client in the inner loop
(i.e., αt

i,∀i ∈ [N ]) perform the best. More concretely, at time
t, the intra-cluster weights βt is optimized by encouraging
better performance of the updated inter-cluster aggregated
module θ̃(αt

i,β) across all new tasks {T t
i }Ni=1 of N clients:

βt = argminβ
∑N

i=1 LT t
i
(θ̃(αt

i,β)). (7)

Considering the intra-cluster weight βc for each cluster c
separately, the gradient descent update is given by:

βc ← βc − η2
∑N

i=1∇βc
LT t

i
(θ̃(αt

i,β)), ∀c ∈ [K], (8)

where η2 is the outer-loop learning rate. We can see that
the gradient for updating βc is the sum of the gradients of
individual tasks ∇βc

LT t
i
,∀i ∈ [N ], which by chain rule, can

be expressed as:

∇βc
LT t

i
= (∇βc

θc)
⊤(∇θc θ̃(α

t
i,β))

⊤∇θ̃(αt
i,β)LT t

i
. (9)

Here, the first term ∇βc
θc is simply a matrix with the task-

specific modules [θ1, · · · , θM ] as the column vectors (from
(4)). The second term ∇θc θ̃(α

t
i,β) is the derivative of the

updated inter-cluster aggregated module θ̃(αt
i,β) w.r.t. the

cluster-specific module θc, where αt
i is obtained by updates

in the inner loop leveraging the cluster-specific modules
{θc}Kc=1 (see (6) and (5)). Hence, evaluating ∇θc θ̃(α

t
i,β)

involves back-propagating through the inner loop conducted
at the client side. Deriving from (6), it can be obtained that
∇θc θ̃(α

t
i,β) = αt

i,cI − η1θc(∇θ̃(α,β)LT t
i
)⊤, where αt

i,c is
the updated inter-cluster weight associated with cluster c,
and ∇θ̃(α,β)LT t

i
is the task gradient w.r.t. the inter-cluster

aggregated module using the initial α.
Generally, computing the outer-loop gradients in (9) re-

quires (a) the task-specific modules stored at the server,
which constitutes the first term ∇βc

θc, and (b) the gra-
dients w.r.t. θc derived through the inner-loop ∇θcLT t

i
=

(∇θc θ̃(α
t
i,β))

⊤∇θ̃(αt
i,β)LT t

i
. Since the inner-loop updates of

α is conducted at the client side, we compute ∇θcLT t
i

at
clients and send it to the server to compute the outer-loop
gradient ∇βc

LT t
i

in (9). We then aggregate ∇βc
LT t

i
across N

clients to perform updates on βc in (8). In our implementation,
we perform only one outer-loop update. Hence, the additional
computation and communication overhead introduced remains
manageable. Since only gradients related to the cluster-specific
modules are shared with the server, privacy is preserved.

3) Actual Learning of Inter-Cluster Weights: Upon comple-
tion of the bi-level optimization, we obtain a set of effective
cluster-specific modules with updated intra-cluster weights βt,
generalized for all the tasks at time t. On the updated cluster-
specific modules, each client i then performs actual learning
of personalized inter-cluster weight α̂t

i for the new task T t
i :

α̂t
i = argminα LT t

i
(θ̃(α,βt)). (10)

Note that the inner-loop updates described earlier are only
auxiliary for optimizing the intra-cluster weights. Leveraging
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Fig. 3. An illustration of bi-level aggregation weight learning. The
cluster-specific modules θc, weighted by global intra-cluster weights βc,
are sent to clients (outer-loop forward pass). Based on the received θc,
each client locally updates inter-cluster weights αt

i by minimizing the
task loss LT t

i
(inner-loop). Upon completion, the gradients ∇θcLT t

i
are derived through the inner-loop updates and sent back to the server
(outer-loop backward pass). After outer-loop optimization, the learned
βt
c is forwarded for learning the actual inter-cluster weight α̂t

i.

the optimized intra-cluster weights, the inter-cluster weights
α̂t

i computed here contribute to the actual initialization for
learning task T t

i . Figure 3 illustrates the full process of bi-
level aggregation weight learning.

E. Initialization for New Task Adaptation
Once we obtain the learned intra-cluster weights βt and the

personalized inter-cluster weights α̂t
i tailored to task T t

i , we
generate the final aggregated module θ̃ti = θ̃(α̂t

i,β
t) and use

it as initialization for adapter tuning on new task T t
i :

min
θt
i←θ̃t

i

LT t
i
(θti). (11)

Generally, the learned bi-level weights α̂t
i,β

t collectively
determine how to leverage knowledge from tasks stored in
the knowledge pool to facilitate learning of new tasks.

IV. EXPERIMENTS

A. Experimental Setup
1) Datasets and Settings: We evaluate FedKEI on three

FL datasets across different medical imaging modalities for
disease classification: (1) skin lesion identification from der-
moscopic images; (2) chest disease diagnosis from X-rays; and
(3) eye disease classification from retinal OCT. These datasets
cover diverse imaging techniques and conditions, allowing us
to assess robustness across clinical scenarios. We construct
tasks to simulate the FCL setting, defining a task order such
that, at each time step, the task (i.e., the disease) encountered
by all clients is largely the same. This synchronous task order
setup reflects real-world scenarios in which medical institu-
tions often face the same new diseases—such as emerging
illnesses or pandemic outbreaks—around the same time.

Derm-FL Dataset: Following [47], we collect data from
four public skin datasets — ISIC19 [48], HAM10000 [49],
PAD-UFES [50], and Derm7pt [51] — and split them into
ten clients to simulate an FL setting (N = 10). Figure 4a

Fig. 4. Data distribution among clients for (a) Derm-FL, (b) CXR-FL,
and (c) OCT datasets.

Fig. 5. Order of disease learning for (a) Derm-FL, (b) CXR-FL, and (c)
OCT datasets.

shows the data distribution among ten clients. The combined
dataset includes 37,607 dermoscopic images across eight skin
lesion types: MEL, NV, BCC, AK, VASC, BKL, DF, and SCC.
To simulate continual adaptation, we construct five sequential
tasks per dataset (M = 5), each involving identifying a new
disease from those previously seen. Figure 5a shows the order
of disease learning for the four datasets. For example, the
first task is to identify NV from MEL, the second BCC from
{MEL, NV}, and so on. While tasks are mostly aligned across
clients, some datasets lack certain diseases (e.g., PAD-UFES
lacks DF, Derm7pt lacks AK). In such cases, we substitute
available alternatives (e.g., VASC for AK in Derm7pt). This
mild relaxation of task alignment reflects real-world variability
in disease prevalence and data availability, allowing us to
evaluate FedKEI’s robustness under such conditions.

CXR-FL Dataset: We compile chest X-ray images from
three public datasets—NIH-CXR-14 [19], CheXpert [52], and
VinDr-CXR [53]—treating each as a client to simulate an FL
setting (N = 3). We retain seven common classes (including
‘No Finding’ and six diseases: Eff, PTX, Cons, CM, M/N, and
Atel), resulting in 79,010 images. Figure 4b shows the data
distribution among three clients. By treating each disease as
a task, we construct six sequential tasks (M = 6). The first
task is to identify Eff from No Finding, the second task is to
identify PTX from {No Finding, Eff}, etc. Figure 5b shows the
task order for CXR-FL dataset. Since all three clients contain
the six diseases, the same task order is applied to all clients.

OCT Dataset: We also evaluate our method on the OCT
dataset [54], which contains 84,495 retinal images spanning
four conditions: Normal, CNV, DME, and Drusen. To simulate
label non-IID scenario, we split each class among five clients
following Dir(0.5) (N = 5). Figure 4c shows the data
distribution among five clients. We construct three tasks from
the four classes (M = 3). The first task is to identify CNV
from Normal, the second is to identify DME from {Normal,
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CNV}, etc. Figure 5c shows the task order for OCT dataset.
2) Implementation Details: For fair comparisons, all meth-

ods use the same FM adapter tuning setup. For our main
experiments, we adopt ViT-B/16 [2] pre-trained on ImageNet
as the fixed backbone F ∗ and fine-tune LoRA adapters [8]. For
each new task, the adapter and head are fine-tuned locally for
30 epochs with a learning rate of 0.005 and batch size of 64
across all three datasets. Communication between server and
clients occurs only at the start of each new task to transmit
aggregated knowledge. All images are preprocessed to match
the ViT-B/16 input: grayscale images (from CXR-FL and
OCT) are converted to pseudo-RGB by channel replication,
resized to 224×224, and normalized using ImageNet statistics,
consistent with the FM’s pretraining protocol.

For our FedKEI, we set both the inner-loop learning rate η1
(for inter-cluster weight α) and the outer-loop learning rate
η2 (for intra-cluster weight β) to 0.05. In each inner loop, we
update the inter-cluster weight α on local task for 1 epoch
with a batch size of 64 (i.e., the number of inner-loop steps
varies based on task data size). The number of outer-loop steps
is set to 1. For clustering, we perform k-means++ [43] and
tune the number of clusters K for both adapters and heads in
{3, 5, 7, 9}. We use SGD optimizer for all gradient updates.

3) Evaluation Metrics: We evaluate new task adaptation
using two metrics: (1) final AUC at the last epoch of each
task, and (2) Learning Curve Area (LCA), calculated by
averaging the AUC across all epochs of each task. The former
assesses how well a task is learned and the latter indicates
the speed of learning a task [55]. A larger LCA reflects faster
learning, as it indicates that higher performance is reached
earlier during training—often due to better initialization or
effective knowledge transfer from prior tasks—resulting in
a greater cumulative area under the learning curve. For all
experiments, we conduct three trials with different seeds and
report the mean and standard deviation.

B. Baseline Comparison
We compare FedKEI with 10 baselines across four FL

categories. Traditional FL methods include: (1)FedAvg [22],
which averages task-specific modules from all clients for ini-
tialization; (2)FedProx [23], which adds a proximal term to im-
prove generalization; and (3)FFA-LoRA [36], which enhances
LoRA aggregation by partially freezing LoRA’s weights. FCL
methods prevent forgetting: (4) FedCurv [14], a regularization-
based method preserving prior tasks; and (5) FLwF [15], a
distillation-based method aligning current and previous task
logits. FDG methods improve generalization to unseen tasks:
(6)ELCFS [31], which shares amplitude spectra across clients;
and (7)FedGA [32], which enhances aggregation for better
global generalization. PFL methods personalize models: (8)
Per-FedAvg [25], a meta-learning method for fast adaptation;
(9) FedAMP [26], which computes aggregation weights based
on model similarity; and (10) APPLE [27], which learns
aggregation weights by optimizing client objectives. Lastly,
we include a naive baseline Rand, which randomly initializes
the adapter and head for new task.

Table I, II and III present results on Derm-FL, CXR-FL,
and OCT datasets, respectively, which include the final AUC

TABLE I
BASELINE COMPARISONS ON DERM-FL DATASET. WE REPORT THE

INDIVIDUAL TASK PERFORMANCE (AUC) AVERAGED OVER 10 CLIENTS

AS WELL AS THE OVERALL MEAN AUC AND LCA OVER 5 TASKS.

Method
Individual Task AUC Overall

Task 1 Task 2 Task 3 Task 4 Task 5 AUC LCA

Rand‡ 87.92 93.33 87.16 78.38 71.04 83.57±0.12 81.15±0.05

FedAvg‡ 87.92 93.40 88.94 78.64 72.89 84.36±0.11 81.50±0.10

FedProx† 86.54 91.88 88.95 78.31 74.01 84.14±0.18 82.18±0.23

FFA-LoRA† 88.19 93.38 88.58 78.71 73.66 84.50±0.35 81.56±0.30

FedCurv‡ 87.92 93.00 88.43 77.60 69.39 83.27±0.00 80.32±0.00

FLwF‡ 87.92 93.21 88.18 78.61 70.04 83.59±0.07 80.50±0.18

ELCFS‡ 87.37 92.51 87.36 77.18 71.38 83.16±0.09 78.96±0.12

FedGA‡ 87.92 93.51 88.91 78.69 73.81 84.57±0.06 81.79±0.06

Per-FedAvg‡ 88.06 93.51 87.51 77.82 75.45 84.47±0.15 81.21±0.09

FedAMP‡ 87.92 91.72 87.04 76.99 75.40 83.82±0.04 79.98±0.00

APPLE‡ 87.92 93.65 87.66 78.06 75.83 84.63±0.16 81.61±0.07

FedKEI 87.92 94.71 89.93 79.55 80.48 86.52±0.10 85.07±0.08

of each individual task and the overall AUC and LCA aver-
aged across all tasks. To assess the significance of FedKEI’s
performance gains over the baselines, we conducted Welch’s
t-test. The resulting p-values for AUC and LCA are denoted
by superscripts following each method name in the tables: ‡

for p < 0.001, † for p < 0.01, and * for p < 0.05. For all
columns, the best and second-best scores are shown in bold
and underline, respectively. Note that no score is highlighted
for Task 1, as all methods perform the same as Rand—except
FedProx, FFA-LoRA, ELCFS, and Per-FedAvg, which involve
modifications to the local fine-tuning process.

First, from Table I, we observe that FedKEI consistently
outperforms all baselines on the Derm-FL dataset. Specifically,
it achieves improvements of 1.89% and 2.89% in overall AUC
and LCA, respectively, over the second-best methods (APPLE,
FedProx). These results suggest that FedKEI is effective in
enhancing both the accuracy and efficiency of new task adap-
tation. Among the baselines, FCL methods (FedCurv, FLwF)
perform poorly—often worse than the naive Rand—since
merely preserving performance on old tasks does not guar-
antee effective transfer to new tasks and limits adaptability.
FDG method ELCFS also underperforms, suggesting that
enhancing local diversity without task-specific focus can hurt
performance. Traditional FL methods (FedAvg, FedProx, FFA-
LoRA) generally perform well, showing that aggregating past
task-specific modules offers more useful initializations than
Rand. Among PFL baselines, rule-based FedAMP lags behind,
while learning-based Per-FedAvg and APPLE perform well,
highlighting the benefits of direct task-specific optimization.
Our FedKEI, by learning the bi-level aggregation specifically
on the new tasks, generates the most effective initializations
and achieves the best overall performance.

For the CXR-FL dataset (Table II), FedKEI outperforms
the strongest baselines (APPLE, Per-FedAvg) by 0.98% and
1.16% in AUC and LCA, respectively. All FL methods (except
ELCFS) outperform Rand, highlighting the value of leveraging
previous tasks (through model aggregation, knowledge preser-
vation or personalization) in facilitating new task learning
for this dataset. Our FedKEI further boosts performance by
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Fig. 6. Learning curves for individual tasks of FedKEI and the compared baselines on (a) Derm-FL, (b) CXR-FL, and (c) OCT datasets.

TABLE II
BASELINE COMPARISONS ON CXR-FL DATASET. WE REPORT THE

INDIVIDUAL TASK PERFORMANCE (AUC) AVERAGED OVER 3 CLIENTS

AS WELL AS THE OVERALL MEAN AUC AND LCA OVER 6 TASKS.

Method
Individual Task AUC Overall

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 AUC LCA

Rand* 87.23 80.88 82.35 85.28 75.23 76.03 81.17±0.44 78.40±0.54

FedAvg* 87.23 83.56 83.80 84.87 75.68 76.96 82.02±0.02 79.93±0.24

FedProx* 86.74 82.99 83.17 84.36 75.32 77.19 81.63±0.61 79.84±0.60

FFA-LoRA‡ 87.33 83.09 84.24 85.26 74.78 77.56 82.04±0.01 79.95±0.02

FedCurv* 87.23 83.60 83.50 85.42 74.64 77.14 81.92±0.20 80.13±0.24

FLwF† 87.23 84.36 83.75 84.60 74.45 77.06 81.91±0.18 80.04±0.03

ELCFS* 86.14 81.77 82.19 83.38 74.61 77.10 80.86±0.41 78.63±0.37

FedGA† 87.23 83.87 83.23 84.79 75.06 77.33 81.92±0.15 79.92±0.17

Per-FedAvg* 87.09 83.85 83.22 85.16 75.13 77.78 82.04±0.23 80.17±0.19

FedAMP* 87.23 83.94 83.22 84.44 75.16 77.27 81.88±0.26 79.49±0.21

APPLE* 87.23 83.91 83.34 85.11 75.23 77.73 82.09±0.25 80.17±0.21

FedKEI 87.23 85.36 85.07 86.16 76.33 78.25 83.07±0.05 81.33±0.06

TABLE III
BASELINE COMPARISONS ON OCT DATASET. WE REPORT THE

INDIVIDUAL TASK PERFORMANCE (AUC) AVERAGED OVER 5 CLIENTS

AS WELL AS THE OVERALL MEAN AUC AND LCA OVER 3 TASKS.

Method
Individual Task AUC Overall

Task 1 Task 2 Task 3 AUC LCA

Rand‡ 99.82 97.92 92.39 96.71±0.00 95.12±0.08

FedAvg† 99.82 97.90 93.65 97.12±0.12 95.32±0.18

FedProx† 99.74 97.67 93.28 96.90±0.20 95.31±0.16

FFA-LoRA† 99.83 97.93 94.30 97.35±0.04 95.67±0.02

FedCurv‡ 99.82 97.92 93.30 97.01±0.00 94.96±0.10

FLwF‡ 99.82 98.26 93.18 97.08±0.00 95.07±0.01

ELCFS* 99.77 97.68 93.51 96.99±0.40 94.34±0.72

FedGA† 99.82 97.91 93.45 97.06±0.10 95.20±0.04

Per-FedAvg† 99.83 98.03 93.70 97.19±0.09 95.91±0.01

FedAMP† 99.82 97.87 93.49 97.06±0.09 95.29±0.05

APPLE‡ 99.82 98.02 93.47 97.10±0.02 95.56±0.08

FedKEI 99.82 98.74 95.62 98.06±0.02 97.11±0.14

effectively learning the bi-level aggregation. Similar trends are
observed on the OCT dataset (Table III), where our FedKEI
again achieves the best performance, surpassing the strongest
baselines (FFA-LoRA, Per-FedAvg) by 0.71% and 1.20% in
AUC and LCA, respectively.

Figure 6 shows the learning curves of FedKEI and the
baselines across all three datasets. FedKEI consistently outper-
forms all baselines on each task and also enables faster task
learning as observed from the learning curves. For instance, for

the last task of Derm-FL (as shown in Figure 1a), our FedKEI
is able to achieve the final-epoch performance of the baselines
within only a few initial epochs, which means that only a
fraction of the training time is required to achieve similar
performance as the baselines. More concretely, the strongest
baseline APPLE achieves 75.83 AUC for the last task of Derm-
FL at epoch 30 in 146.9 seconds, while our FedKEI surpasses
this with 76.21 AUC at epoch 4, requiring just 20.3 seconds.
This advantage is attributed to the high-quality initializations
generated by FedKEI (as shown by its strong performance at
the start of each task), which facilitate not just better final
performance but also faster adaptation to new tasks.

C. Computation & Communication Costs
In Table IV, we summarize the computation and commu-

nication costs on Derm-FL dataset. The computation cost is
measured in two ways: (1) the average GPU execution time
per task, recorded on a single NVIDIA RTX 3090 GPU
with 24GB memory; and (2) the number of floating-point
operations required per task, including both client-side and
server-side computations, reported in teraFLOPs (TFLOPs).
For communication cost, we report the theoretical download
and upload size per client, where |θ| denotes the parameter size
of the adapter and the head, |DT | denotes the total storage size
of the task dataset, N denotes the number of clients, and K
is the number of clusters in our method.

From the results, we observe that FedKEI’s computation
cost is comparable to the baselines, ranking around the middle
among the 11 methods in terms of both GPU time and FLOPs.
Compared to FedAvg, it adds only 2.92 minutes of GPU time
and 10.08 TFLOPs per task. FFA-LoRA incurs the lowest
TFLOPs due to partial freezing of LoRA. While the cost of
FedKEI is higher than that of FedProx and FFA-LoRA, it
is considerably lower than more sophisticated methods such
as FLwF, FedGA, and Per-FedAvg, which involve additional
inference or complex meta-learning procedures that introduce
substantial computation during the task learning phase. In con-
trast, our FedKEI performs clustering and bi-level aggregation
learning only once prior to task learning, keeping the overall
computation cost relatively modest.

For communication cost, FedKEI requires transmitting data
equivalent to K cluster-specific modules three times between
the server and clients during bi-level aggregation learning (as
shown in Figure 3), and uploading the learned task-specific
modules once to the server after local task learning, leading
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TABLE IV
COMPUTATION AND COMMUNICATION COSTS ON DERM-FL DATASET.

Method
Computation Cost Communication Cost

GPU time / task TFLOPS / task Theoretical cost

FedAvg 20.61 min 128.54 2× |θ|
FedProx 20.66 min 128.54 2× |θ|
FFA-LoRA 20.59 min 85.68 |θ|
FedCurv 21.50 min 156.48 (2N + 2)× |θ|
FLwF 29.75 min 192.90 2× |θ|
ELCFS 36.23 min 130.68 (N + 1)× |DT |
FedGA 32.39 min 157.10 2× |θ|
Per-FedAvg 36.64 min 170.48 4× |θ|
FedAMP 20.92 min 128.78 2× |θ|
APPLE 21.39 min 149.64 (N + 1)× |θ|

FedKEI 23.52 min 138.62 (3K + 1)× |θ|

to a total communication size of (3K + 1)× |θ|. Although it
is higher than methods like FedAvg involving only constant
multiples of |θ|, the number of clusters K is typically smaller
than the number of clients N , making FedKEI more efficient
than FedCurv and APPLE. ELCFS incurs far higher cost
than the others by transmitting amplitude spectra as large as
the raw dataset |DT |. Since |θ| consists only of lightweight
components (e.g., a LoRA adapter on ViT-B/16 is only 0.28
MB), the actual communication cost of our FedKEI remains
low—approximately 2.86 MB with K = 3 in our experiments.

D. Ablation Studies
1) Effect of Key Components in FedKEI: To assess the

contribution of each component in FedKEI, we compare
it with three incremental variants: Variant A aggregates all
previous task-specific modules within each client into client-
specific modules and learns the weights α to combine them
for initialization; Variant B adds global clustering, replacing
client-specific with cluster-specific modules for aggregation;
Variant C learns the intra-cluster weights β via direct gradient
descent on new task objectives, similarly to α. Our FedKEI
further employs a bi-level optimization scheme, optimizing the
intra-cluster weight β collaboratively across clients to facilitate
the local adaptation of the inter-cluster weight α.

Table V presents ablation results on the three datasets, along
with the performance gain of each variant over its predecessor.
We observe consistent improvements with each added com-
ponent across all datasets. Notably, learning the inter-cluster
(or inter-client) weight α yields significant gains over Rand,
especially for Derm-FL and CXR-FL. This is because the
mechanism of learning to combine past modules towards new
task objectives serves to generate a much more informative
initialization than the random initialization. Adding clustering
further boosts performance, as the task-specific modules within
each cluster are now more relevant, producing diverse clusters
that enable more flexible personalized aggregation. Allowing
the intra-cluster weight β to be learned towards new tasks fur-
ther increases the flexibility of customizing the initializations.
Our FedKEI, by employing the bi-level optimization scheme,
shows notable improvements over Variant C, demonstrating its
effectiveness in learning better bi-level weights and producing
better initializations for improved task adaptation.

2) Effect of FM and Adapter Choices: To validate FedKEI’s
compatibility with different FMs and adapters, we conduct
two experiments: (1) fine-tuning Swin-B [56] (pretrained on
ImageNet) with LoRA, and (2) fine-tuning ViT-B/16 with IA3
adapter [57]. Swin-B is a variant of Swin Transformer that
employs hierarchical structure and shifted windows for multi-
scale feature extraction, and IA3 adapts attention layers via
learned rescaling vectors for the keys and values. The results
on Derm-FL are summarized in Table VI.

From the results, we observe two key findings. First, Swin-B
with LoRA outperforms ViT-B/16 with LoRA (Table I), likely
due to its superior multi-scale feature processing for medical
images, while ViT-B/16 with IA3 achieves performance com-
parable to LoRA. Second, FedKEI consistently achieves top
performance: with Swin-B + LoRA, it surpasses the second-
best performer (FedGA)) by 0.96% in AUC and 1.88% in
LCA; with ViT-B/16 + IA3, it outperforms the second-best
performer (APPLE) by 1.27% in AUC and 2.75% in LCA.
These results highlight FedKEI’s robustness and adaptability
across diverse FMs and adapters. Other baseline trends remain
consistent with Table I. Note that since FFA-LoRA is designed
specifically for LoRA, it is omitted from IA3 experiments.

3) Effect of Task Order: In this section, we assess FedKEI’s
robustness to task order variations on Derm-FL. The first
experiment retains synchronous alignment but reverses the
task order for each of the four source datasets (e.g., ISIC19:
DF → BKL → AK → BCC → NV). The second adopts
an asynchronous setup, randomly shuffling the task order for
each client so that all clients follow different task orders. The
former tests the effect of task order in the synchronous setup,
while the latter tests the asynchronous setup, where a disease
encountered by one client may have been seen by other clients.

As shown in Table VII, reversing the task order slightly
improves overall performance compared to the original (Ta-
ble I), suggesting that learning certain tasks earlier may
benefit subsequent ones—likely due to shared visual features
or semantic similarities that enhance knowledge transfer. In
this setting, FedKEI outperforms all baselines, with margins
of 1.40% in AUC and 1.58% in LCA over the second-best
performer Per-FedAvg. Shuffling task orders across clients
yields notable AUC gains of 1.5–3% compared to Table I,
likely because when clients follow different task orders, a new
task encountered by one client may have already been learned
by others, allowing it to benefit from previously learned mod-
ules. Under this asynchronous setup, FedKEI again achieves
the best results, surpassing the next-best methods (APPLE,
FedGA) by 1.08% in AUC and 1.81% in LCA, demonstrating
its robustness across different task order settings.

E. Qualitative Analysis

In this section, we qualitatively analyze FedKEI’s capabil-
ity of learning meaningful initializations by visualizing the
clustering results and the learned inter-cluster weights α for
assigning importance to different clusters. For this analysis,
we use CXR-FL dataset, which consists of three clients and
six tasks for each client. We investigate the quality of the inter-
cluster weight α learned for the last task (i.e., the 6th task)
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TABLE V
ABLATION STUDIES OF FEDKEI’S KEY COMPONENTS. EACH VARIANT INCLUDES ONE MORE DESIGN AT A TIME. FOR EASE OF COMPARISON, WE

ALSO REPORT THE PERFORMANCE INCREMENT OF EACH VARIANT OVER THE PREVIOUS VERSION AFTER ADDING A NEW COMPONENT.

Variant
learned

α
modules

clustering
learned

β
bi-level

optimization
Derm-FL CXR-FL OCT

AUC Incr. LCA Incr. AUC Incr. LCA Incr. AUC Incr. LCA Incr.

Rand 83.57±0.12 - 81.15±0.05 - 81.17±0.44 - 78.40±0.54 - 96.71±0.00 - 95.12±0.08 -

Variant A ✓ 85.62±0.00 2.05 84.19±0.01 3.04 81.97±0.23 0.8 80.15±0.09 1.75 96.93±0.20 0.22 95.84±0.30 0.72
Variant B ✓ ✓ 85.97±0.03 0.35 84.24±0.08 0.05 82.11±0.40 0.14 80.28±0.32 0.13 97.37±0.32 0.44 96.33±0.40 0.49
Variant C ✓ ✓ ✓ 86.02±0.12 0.05 84.41±0.12 0.17 82.49±0.07 0.38 80.61±0.13 0.33 97.50±0.23 0.13 96.43±0.09 0.10

FedKEI ✓ ✓ ✓ ✓ 86.52±0.02 0.50 85.07±0.03 0.66 83.07±0.05 0.58 81.33±0.06 0.72 98.06±0.02 0.56 97.11±0.14 0.68

TABLE VI
BASELINE COMPARISONS ON DERM-FL DATASET WITH (1) FINE-TUNING

SWIN-B WITH LORA, AND (2) FINE-TUNING VIT-B/16 WITH IA3.

Method
Swin-B + LoRA ViT-B/16 + IA3

AUC LCA AUC LCA

Rand 86.54±0.08 84.44±0.12 83.99±0.10 82.70±0.16

FedAvg 87.85±0.10 85.15±0.17 84.39±0.14 82.19±0.21

FedProx 87.79±0.21 85.38±0.31 84.53±0.13 82.56±0.18

FFA-LoRA 88.00±0.11 85.50±0.25 - -
FedCurv 86.60±0.01 83.86±0.06 82.96±0.07 80.25±0.15

FLwF 86.31±0.18 83.36±0.13 83.17±0.19 80.48±0.20

ELCFS 86.47±0.09 82.96±0.16 83.78±0.18 80.56±0.25

FedGA 88.08±0.08 85.58±0.10 84.63±0.11 82.64±0.11

Per-FedAvg 87.96±0.10 85.07±0.20 84.65±0.20 82.55±0.14

FedAMP 85.60±0.02 81.99±0.11 82.86±0.07 78.50±0.11

APPLE 87.31±0.11 84.80±0.16 84.82±0.09 82.81±0.22

FedKEI 89.04±0.10 87.46±0.15 86.09±0.09 85.56±0.11

TABLE VII
BASELINE COMPARISONS ON DERM-FL DATASET WITH (1)

SYNCHRONOUS REVERSED TASK ORDER, AND (2) ASYNCHRONOUS

SHUFFLED TASK ORDERS ACROSS CLIENTS.

Method
Reversed Task Order Shuffled Task Order

AUC LCA AUC LCA

Rand 85.01±0.11 82.99±0.18 86.44±0.13 85.34±0.20

FedAvg 85.24±0.08 83.39±0.13 86.57±0.21 85.42±0.19

FedProx 85.14±0.22 83.31±0.17 86.64±0.09 85.52±0.13

FFA-LoRA 85.01±0.23 83.44±0.15 86.85±0.22 85.57±0.31

FedCurv 85.07±0.09 82.85±0.09 86.39±0.12 84.70±0.15

FLwF 84.91±0.16 82.80±0.20 86.46±0.11 84.67±0.19

ELCFS 84.36±0.05 81.58±0.11 85.87±0.24 82.62±0.21

FedGA 85.28±0.19 83.41±0.11 86.79±0.07 85.76±0.13

Per-FedAvg 85.38±0.08 83.76±0.15 86.66±0.06 85.38±0.14

FedAMP 84.40±0.01 81.92±0.04 86.29±0.04 84.63±0.05

APPLE 85.37±0.06 83.62±0.18 86.86±0.11 85.74±0.15

FedKEI 86.78±0.07 85.34±0.11 87.94±0.14 87.57±0.09

by assessing how closely α aligns with the optimized adapter
and head of the 6th task (obtained after local fine-tuning) in
terms of assigning importance to different clusters to generate
the initializations. Here, we set the number of clusters K = 3
for both adapters and heads.

Figure 7 shows the t-SNE plots of the clustering results
and the learned α for the 6th task of three clients for the
adapters and heads, respectively. In the t-SNE plots, each
point (Ci,Tt) represents the task-specific module of task t
of client i, obtained after local fine-tuning on that task. To

Fig. 7. Clustering results (t-SNE) and the inter-cluster weight α learned
for the 6th task of three clients of CXR-FL for (a) adapter and (b) head.
Each point (Ci,Tt) is the task-specific module of task t of client i.

generate initializations for the 6th task, we perform clustering
on all the 3× 5 = 15 previous task-specific modules stored at
the server. The clustering results are shown in three different
colors, and the black dots represent the optimized modules of
the 6th task of three clients after local fine-tuning (which are
not involved in the clustering). From the plots, we see that
FedKEI tends to assign larger weights to clusters closer to
the optimized modules of the 6th task. For instance, in Figure
7a, the optimized adapter of the 6th task of client 3 (i.e.,
point C3,T6) is located closer to cluster 1 and more distant
from cluster 2. The weight α learned to generate the adapter’s
initialization for this task assigns a higher value to cluster 1
and a lower value to cluster 2. Similar trends are also observed
in Figure 7b for the heads. This alignment shows that FedKEI
effectively identifies clusters more relevant to the optimally
learned adapter and head of the new task, generating well-
informed initializations that facilitate new task learning.

F. Evaluation on Medical Pretrained FMs and 3D Images

To further assess FedKEI’s effectiveness, we conduct ex-
periments under two additional setups: (1) using a larger
medically-pretrained FM and (2) applying it to 3D medical
imaging. For the first, we evaluate FedKEI with RETFound
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TABLE VIII
BASELINE COMPARISONS BY FINE-TUNING LORA ON (1) RETFOUND

WITH THE OCT DATASET, AND (2) VOCO WITH THE CC-CCII DATASET.

Method
RETFound + LoRA on OCT VoCo + LoRA on CC-CCII

AUC LCA AUC LCA

Rand 97.92±0.03 95.21±0.09 85.70±0.09 86.32±0.04

FedAvg 98.85±0.08 96.19±0.05 86.09±0.05 87.30±0.21

FedProx 98.66±0.07 96.54±0.03 85.74±0.14 86.79±0.07

FFA-LoRA 98.77±0.13 96.14±0.10 86.19±0.08 87.12±0.05

FedCurv 98.51±0.04 95.14±0.01 85.61±0.05 86.57±0.07

FLwF 98.55±0.07 96.63±0.11 85.62±0.10 86.61±0.19

ELCFS 98.10±0.13 95.52±0.04 85.59±0.05 85.74±0.17

FedGA 98.78±0.05 96.20±0.09 86.26±0.11 87.31±0.10

Per-FedAvg 98.58±0.11 96.92±0.05 86.24±0.09 87.52±0.05

FedAMP 98.85±0.05 96.40±0.08 85.77±0.03 86.42±0.10

APPLE 98.86±0.08 96.77±0.10 86.30±0.07 87.62±0.13

FedKEI 99.07±0.07 96.98±0.04 87.14±0.07 88.58±0.11

[58], fine-tuning its ViT-L/16 encoder with LoRA on our feder-
ated OCT dataset. For the second, we use the CC-CCII dataset
[59], which contains CT scans from three classes: Normal,
Common Pneumonia (CP), and Novel Coronavirus Pneumonia
(NCP). We simulate the FCL setting by distributing each class
across 5 clients using Dir(0.5) and defining two sequential
tasks: identifying CP from Normal, and NCP from {Normal,
CP}. We adopt the VoCo model [60] pretrained on 3D CT
data and fine-tune it with LoRA on CC-CCII.

The results, summarized in Table VIII, demonstrate the ro-
bustness of FedKEI across both settings. In the first setup, Fed-
KEI achieves top performance with RETFound, outperforming
the second-best method APPLE by 0.21% in AUC—even in
a near-saturated regime where most methods approach 99%
AUC due to strong pretraining on highly relevant OCT data.
In the second setup with 3D CT images, FedKEI again leads,
surpassing APPLE by 0.84% in AUC and 0.96% in LCA.
These results demonstrate FedKEI’s effectiveness with larger
medical FMs and in challenging 3D imaging tasks.

V. CONCLUSION

In this work, we propose FedKEI, a novel FL framework
that enhances adaptation to new diseases for FM adapter
tuning. FedKEI selectively transfers knowledge from previous
task-specific modules to generate informed initializations for
new tasks. It performs global clustering at the server to
generalize knowledge across tasks, followed by bi-level ag-
gregation weight learning to personalize transfer for each new
task. Extensive experiments on medical datasets demonstrates
FedKEI’s advantage in adapting to new diseases compared to
state-of-the-art methods.

Despite its strong performance, FedKEI has several limi-
tations that offer directions for future work: (1) It has yet
to be evaluated in real-world large-scale FL systems, where
challenges like device heterogeneity and connectivity instabil-
ity may arise; (2) Testing on additional modalities and multi-
modal settings (e.g., with EHRs or genomics) could further
assess its generalizability; and (3) While the added overhead is
moderate, future work will explore first-order approximations
and model compression to improve efficiency.
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