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Clustered Task-Aware Meta-Learning by Learning
From Learning Paths

Danni Peng and Sinno Jialin Pan

Abstract—To enable effective learning of new tasks with only
a few examples, meta-learning acquires common knowledge from
the existing tasks with a globally shared meta-learner. To further
address the problem of task heterogeneity, recent developments
balance between customization and generalization by incorporat-
ing task clustering to generate task-aware modulation to be applied
to the global meta-learner. However, these methods learn task
representation mostly from the features ofinput data, while the
task-specific optimization process with respect to the base-learner
is often neglected. In this work, we propose a Clustered Task-
Aware Meta-Learning (CTML) framework with task representa-
tion learned from both features and learning paths. We first conduct
rehearsed task learning from the common initialization, and collect
a set of geometric quantities that adequately describes this learning
path. By inputting this set of values into a meta path learner, we au-
tomatically abstract path representation optimized for downstream
clustering and modulation. Aggregating the path and feature rep-
resentations results in an improved task representation. To further
improve inference efficiency, we devise a shortcut tunnel to bypass
the rehearsed learning process at a meta-testing time. Extensive
experiments on two real-world application domains: few-shot im-
age classification and cold-start recommendation demonstrate the
superiority of CTML compared to state-of-the-art methods. We
provide our code at https://github.com/didiya0825.

Index Terms—Task clustering, task representation based on
learning path, task-aware meta-learning.

I. INTRODUCTION

THE astonishing performance of deep learning relies on
large amounts of data, which are not always available. Hu-

mans, on the other hand, are able to learn new tasks much more
quickly, leveraging prior experience to relate knowledge among
tasks. Inspired by this property of human intelligence, meta-
learning (also known as learning to learn) [1] acquires transfer-
able knowledge from existing tasks in the form of embedding

Manuscript received 21 May 2022; revised 11 January 2023; accepted 14
February 2023. Date of publication 6 March 2023; date of current version 30
June 2023. This work was supported in part by Alibaba Group through Alibaba
Innovative Research (AIR) Program and Alibaba-NTU Singapore Joint Research
Institute (JRI), Nanyang Technological University, Singapore. Recommended
for acceptance by T. M. Hospedales. (Corresponding author: Sinno Jialin Pan.)

Danni Peng is with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
danni001@e.ntu.edu.sg).

Sinno Jialin Pan is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798, and also with the Depart-
ment of Computer Science and Engineering, The Chinese University of Hong
Kong, Hong Kong (e-mail: sinnopan@cuhk.edu.hk).

This article has supplementary material provided by the authors and color
versions of one or more figures available at https://doi.org/10.1109/TPAMI.
2023.3250323.

Digital Object Identifier 10.1109/TPAMI.2023.3250323

functions [2], [3], [4], initial parameters [5], [6], optimization
strategies [7], [8], or models that directly map training samples
to network parameters [9], [10]. Recent developments adopt
more advanced techniques like transductive inference [11], [12]
and causal intervention [13] to achieve further improvements.
Although meta-learning has shown success in fields like few-
shot image classification and cold-start recommendation, most
of them typically assume that all the tasks are drawn from a
single distribution and face the challenge of handling tasks that
come from different underlying distributions, a problem known
as task heterogeneity [14], [15], [16].

To overcome this challenge, many recently developed meth-
ods leverage task-specific information to customize the global
meta-learner [17], [18], [19], [20], [21], [22], [23]. To further
consider generalization among related tasks, methods that per-
form various types of task clustering are proposed, including
K-means clustering, hierarchical clustering or relational graph
to accommodate the cluster information, with parameterization
learned from meta-training tasks or from an external knowledge
base [15], [16], [24], [25], [26], [27]. Despite their effectiveness
in improving over the globally shared meta-learning algorithms,
these methods learn task representations only based on the input
distribution in (original or projected) feature space, while the
interaction between data and the base-learner is often neglected.

The amount of information contained in the task-specific data
about a network responsible for performing the task can be seen
as a good representation of the task itself. This can be manifested
as the gradients of the network parameters with respect to the
task-specific loss, or Fisher Information Matrix (FIM) which
indicates the importance of different network parameters in
solving the task. [28] introduce a task embedding method based
on FIM of a pre-trained model. [29] propose to incorporate the
gradients as features when adapting a pre-trained network to a
specific task. To alleviate the conflict issue of the global initial-
ization methods, [30] utilize task gradients at the initialization
as task representation to produce attenuation. However, these
methods represent tasks based on gradients at only a single point
in parameter space (e.g., at a fixed pre-trained model or at the
initialization), while the potential of exploiting a wider range on
the task manifold remains unexplored.

Considering the parameter initialization approach, the key
of success lies in that the task adaptation process is accounted
for when training the meta-learner. This task-specific learning
may involve multiple gradient descent steps, and thus constitute
a learning trajectory on the loss surface [31], [32]. To better
characterize the task optimization behaviors, it is more beneficial
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to look at the complete learning trajectory as opposed to only the
first gradient step at the initialization, as it is likely that tasks with
similar gradients at first will have their learning paths diverged
as the update proceeds. With that in mind, we are motivated to
leverage the entire learning path for better task representation,
which will then be used to condition the global initialization.

In particular, we propose a Clustered Task-aware Meta-
Learning (CTML) framework, building upon the well-known
Model-Agnostic Meta-Learning (MAML) [5]. To address the
problem of task heterogeneity with a good balance between
customization and generalization, we modulate the common
initialization based on task representation learned from both
its local task-specific information and global clustering results.
In addition to using the input features to represent the task,
we further leverage the task learning path with respect to the
base-learner to characterize task from the perspective of opti-
mization. To facilitate clustering among similar learning paths,
we devise a GRU-based meta path learner to abstract path rep-
resentations from the step-wise geometric quantities along the
learning path. We realize that it may be too costly to rehearse the
entire learning process for task representation. Hence, we further
propose a shortcut tunnel to bypass the rehearsed task learning
during meta-testing and predict path cluster assignment directly
from the feature cluster assignment. We carefully study the
effectiveness of CTML in two real-world application domains:
few-shot image classification and cold-start recommendation,
and show that our method is able to outperform the baselines
with comparable inference time.

II. RELATED WORK

A. Task-Aware Meta-Learning

Our work mainly focuses on enhancing the task represen-
tation to handle task heterogeneity in meta-learning. Recent
developments address task heterogeneity by tailoring the shared
knowledge to tasks with task-specific information. [20] and [21]
model the uncertainty exists in task distribution with prob-
abilistic framework. [18], [33] and [19] condition the base
network on task-specific data by designing a meta adaptation
network. To enable more robust training, [22] propose to learn a
lower-dimensional latent space specific to each task to generate
the base network parameters. [23] introduce a non-parametric
approach of task-conditioning based on the task’s similarities
with other meta-training tasks. Relevant to our work, [17] build
upon MAML and modulate the global parameter initialization
with task representation based on input features. [34] generate
preconditioning on the inner update gradients. [35] and [36]
meta-learn the inner update rule and inner update loss function
respectively conditioned on the task-specific information. [37]
further incorporate ensemble of the inner-loop updated models
to reduce variance. [12] adopt the transductive setting, utilizing
the query set to generate synthetic gradient steps from a task-
adaptive initializaiton.

However, customizing the common knowledge to individual
tasks without considering the relations among similar tasks may
lead to poor generalization. In regard to this, [25] and [26]
apply K-means clustering on users (treated as tasks) based on

their profile information to address the cold-start problem in
recommender systems. [24] employ a hierarchical structure to
model the nested relationships inherent in domains with clear
taxonomy, such as image classification. [15] further develop
an automatic relational graph method by constructing a meta-
knowledge graph to preserve and propagate the global structural
information. [16] take advantages of an external knowledge
base to facilitate task clustering. Despite their effectiveness in
exploiting the global clustering structure to generalize across
tasks, they rely solely on the features of input data to represent
task identity, while the interaction between data and the base-
learner (e.g., gradients) which can be highly informative for task
representation is neglected.

B. Gradient-Based Task Representation

Generally, the use of gradient-based features has been shown
to have great potential for deep network adaptation to specific
tasks [29], [38]. In continual learning, [32], [39], [40] explicitly
use gradients for task representation to fight catastrophic forget-
ting. In the context of task-aware meta-learning, [28] propose
to use the FIM of a pre-trained network to represent tasks and
assist the meta task of selecting the best pre-trained model. [30]
leverage gradients of the globally initialized parameters to gen-
erate task-specific attenuation. However, these methods utilize
gradients only at a single point in parameter space (e.g., at a fixed
pre-trained network or at the initialization), while the potential
of exploiting the entire learning trajectory is under-explored.

Meta-learning typically incorporates the entire learning pro-
cess of individual tasks when learning the meta-learner. [41]
propose to conduct task clustering based on gradients at each
inner-update step and aggregate the gradients for more stable
task adaptation, while [27] perform clustering at the end of
the learning trajectory (i.e., based on the adapted parameters of
individual tasks), and then compute a set of new cluster-specific
initializations for a second-stage meta-training to further boost
performance. [31] highlight the benefits of leveraging the entire
learning paths for deriving the common knowledge, but the
proposed algorithm only relies on one geometric quantity – the
length of the path, which can be limited in terms of characterizing
the learning paths, and the information is not used to tailor the
initialization to specific task. Our work aims to address the
above-mentioned limitations, whereby higher-order behaviors
of the learning path are also taken into account to learn a better
task representation for conditioning the global initialization.

III. PRELIMINARIES

In a task-heterogeneous setting, tasks {T1, T2, . . ., TN}
are sampled from a mixture of task distributions
{p1(T ), p2(T ), . . .}, where the number of underlying
distributions may not be known. The goal of meta-learning is
to learn sharable knowledge by training the meta-learner on
a set of meta-training tasks T

tr = {Ti}N
tr

i=1 , and test it on a
set of meta-testing tasks T

te = {Ti}Ni=Ntr+1. For each task
Ti ∈ T

tr ∪ T
te, the samples are further divided into a training

set (also termed support set) Dtr
Ti = {(xi,j , yi,j)}

ntr
Ti

j=1 and a test
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set (also termed query set) Dte
Ti = {(xi,j , yi,j)}

nTi
j=ntr

Ti
+1

, which

together form an ”episode” [2]. This episodic scheme allows
us to train tasks to learn fast during meta-training, and test the
learning performance of new tasks in the same manner during
meta-testing. For few-shot learning, the size of the training set
ntrTi is usually small.

Our work builds upon Model-Agnostic Meta-Learning
(MAML) [5]. It implements the meta-learner as an initialization
of parameters θ0 ∈ R

D of the base-learner fθ responsible for the
prediction task. During meta-training, the global initialization θ0
is first adapted to each meta-training task Ti ∈ T

tr by learning
on the respective training set Dtr

Ti , which yields the task-specific
parameters θTi . After that, loss is computed on the test set Dte

Ti
based on θTi and propagated backwards to update θ0. Taking
one-step adaptation as an example, the meta-optimization is as
follows:

θ∗0 = argmin
θ0

∑
Ti∈Ttr

L(fθTi ,D
te
Ti)

= argmin
θ0

∑
Ti∈Ttr

L
(
fθ0−α�θL(fθ0 ,Dtr

Ti
),Dte

Ti

)
, (1)

where α is the adaptation rate, L(fθ,D) can be mean
square error loss for regression task (i.e., 1

|D|
∑

(x,y)∈D(y −
fθ(x))

2), or cross-entropy loss for classification task (i.e.,
− 1

|D|
∑

(x,y)∈D y log fθ(x)). During meta-testing, the learned
global initialization θ∗0 is adapted to each meta-testing task
Ti ∈ T

te using Dtr
Ti , and the learning performance is evaluated

on Dte
Ti .

However, with a globally shared initialization, MAML is not
capable of handling task heterogeneity. Though task-adaptive
methods have been developed to tailor the global initialization,
they lack explicit modeling of the global clustering structure.
Hence, a framework considering both task-specific information
and global structure is desired.

IV. METHODOLOGY

Grounded on MAML, our CTML framework modulates the
common initialization based on task representation learned from
two different perspectives enhanced with the clustering infor-
mation. Specifically, given the training set of a specific task, we
first conduct rehearsed learning of the task from the common
initialization and compute a set of step-wise quantities along
the learning path. This set of values will be inputted into a
meta path learner to generate the task-specific path embedding.
On the other hand, input features of the given task will also
be extracted to form the feature embedding. Both feature and
path embeddings will then undergo a soft K-means clustering
in their respective latent space. Finally, the two embeddings
enriched with cluster information will be aggregated to produce
the task-aware modulation to be applied on the global initial-
ization. From this modulated initialization, standard MAML
follows, which conducts the actual task learning on the training
set and performs meta-update across tasks by optimizing the
test sets. To further improve the inference efficiency, a shortcut
tunnel is simultaneously learned during meta-training, which at

Fig. 1. Overview of CTML. For each incoming task Ti, part (a) extracts
path representation and performs clustering in the path representation space;
part (b) extracts feature representation and performs clustering in the feature
representation space; part (c) generates a task-aware modulation to be applied
on the global initialization; part (d) reconstructs path cluster assignment from
feature cluster assignment.

meta-testing time can be used to bypass the rehearsed learning
process by generating path cluster assignment directly from the
feature cluster assignment. Fig. 1 shows an overview of the
CTML framework.

In the following sections, we first elaborate on task represen-
tation learning based on learning path and features respectively,
and then introduce the task-aware modulation and the shortcut
tunnel.

A. Task Representation Based on Learning Path

1) Path Construction: To obtain the representation of task
Ti based on learning path, we first conduct a τ -step rehearsed
learning from the global initialization θ0 on training set Dtr

Ti .
Applying the same gradient descent update as in MAML, we
obtain the updated parameters at each step t ∈ {1, 2, . . ., τ} by:

θ̃tTi = θ̃t−1
Ti − α�θL(fθ̃t−1

Ti
,Dtr

Ti ), (2)

where θ̃0Ti = θ0. The overhead ·̃ is used to differentiate between
the parameters updated from the rehearsed learning and from
the actual learning.

Joining the discrete points {(θ̃tTi , L̃
t
Ti)}

τ
t=0 constitutes the

rehearsed learning path of Ti (we write L(fθ̃t
Ti
,Dtr

Ti ) as L̃t
Ti

for brevity) on the unique task manifold MTi ∈ R
D+1, char-

acterized by the base-learner function and the task-specific
data distribution. We collect the coordinates of point (θ̃tTi , L̃

t
Ti)

at each update step t ∈ {0, 1, 2, . . ., τ} to indicate the exact
learning trajectory. To account for higher-order behaviors of the
learning path, we further incorporate the gradients �θL̃t

Ti and

the Fisher Information Matrix (FIM) F̃ t
Ti at each step, specifying

the direction and curvature respectively. The FIM provides a
measure of the amount of information that task Ti contains
about the parameters θ. We use FIM to transform second-order
derivative to the square of first-order derivative:

F (θ) = −Ex,y∼p̃(x)pθ(y|x)[�2
θ log pθ(y|x)]

= Ex,y∼p̃(x)pθ(y|x)[�θ log pθ(y|x)�θ log pθ(y|x)�]. (3)
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Fig. 2. Illustration of task learning under the CTML framework. Tasks with
similar rehearsed learning paths will produce similar modulations on the global
initialization θ0, resulting in more informed task-adaptive initializations that
facilitate the actual task learning.

To avoid analytically computing the expectation of the com-
plicated density function, we adopt the common approach to
approximate the expectation with empirical Fisher based on
the training samples [42], [43]. That is, for a task Ti with the
cross-entropy loss L, we compute its empirical FIM F̃ t

Ti at step
t as follows:

F̃ t
Ti = Ex,y∼Ti [�θL(fθ̃t

Ti
, x, y)�θL(fθ̃t

Ti
, x, y)�]. (4)

Following [28], we assume negligible correlation between dif-
ferent parameters and consider only the diagonal entries of F̃ t

Ti ,

denoted by F̃ t
Ti . As a result, we obtain a set of step-wise quan-

tities {(θ̃tTi , L̃
t
Ti ,�θL̃t

Ti , F̃
t
Ti)}

τ
t=0 that adequately describes the

rehearsed learning path.
As opposed to looking at only a single point in the param-

eter space (e.g., use gradients at the initialization to represent
task [30]), it is beneficial to take into account the entire learning
path traversed, which gives a more complete picture of the
optimization process. Take for instance, two tasks Ta and Tb may
have gradients forming a small angle ψ0

a,b at the initialization,
i.e., cos(ψ0

a,b) > 0. However, it is likely that their learning paths
will diverge as the gradient update proceeds, i.e., the accumu-
lated angle

∑τ
t=0 cos(ψ

t
a,b) < 0 (see dotted paths of T2 and T3

in Fig. 2). Conversely, the tasks may have gradients pointing in
different directions at first, but eventually converge towards the
same direction as the learning proceeds (see dotted paths of T1
and T2). Considering a single step only can be restrictive for task
representation from the optimization perspective. Looking fur-
ther down the path allows better characterization of the learning
behavior and even the flexibility to determine the “important”
steps (as shown in our experiments later), producing a more
informative task representation.

2) Path Representation: Having collected the step-wise
quantities {(θ̃tTi , L̃

t
Ti ,�θL̃t

Ti , F̃
t
Ti)}

τ
t=0 along the rehearsed

learning path, the problem now is how to evaluate ”similarity”
among different task learning paths for clustering. Previous
works with single-step gradients usually compute dot product
or cosine similarity between gradients of two tasks [30], [44],
[45]. With multiple steps, a straightforward modification will be
to simply sum up the similarity scores at all steps. However, this

human-defined rule may not be the best way of measuring path
similarity. Instead, we propose to employ a meta path learner
to automatically learn a path embedding from the step-wise
quantities, and then measure the similarity between these vector
representations. In other words, the meta path learner induces a
latent space on which the distance metric best characterizes what
is considered as ”similar” (or ”dissimilar”) among task learning
paths.

Before we delve into the design of the path learner, we first
elaborate on how we construct the input to the path learner
from the step-wise quantities. Recall that at each step t, we
have θ̃tTi ,�θL̃t

Ti , F̃
t
Ti ∈ R

D and L̃t
Ti ∈ R. To obtain a regularly

shaped input, we duplicate L̃t
Ti to form a D-dimensional vector

and stack it together with the other 3 components to form a
matrix Pt

Ti ∈ R
4×D. Further stacking the τ + 1 steps forms the

overall 3-D matrix PTi ∈ R
(τ+1)×4×D. To avoid high model

complexity, we apply the meta path learner coordinate-wise on
the base-learner parameters (i.e., over the D dimensions). That
is to say, the same path learner is used to process the matrix
Pd

Ti ∈ R
(τ+1)×4 independently for all d ∈ {1, 2, . . ., D}. With

that, the size of the path learner will be independent of the size
of the base-learner, allowing for good scalability to deeper &
wider backbones. The capacity of the path learner network can
be adjusted by tuning its hidden size.

For the path learner design, we propose to leverage the Gated
Recurrent Units (GRUs) to model the sequential dependencies
among steps.1 Specifically, the hidden state hd,t

i at step t is
obtained by inputting the t-th row vector Pd

t,: ∈ R
4 of Pd

Ti and

the hidden state hd,t−1
i at the previous step t− 1 into the GRU

cell via rd,ti = σ(Wr · [hd,t−1
i ,Pd

t,:]), where [·, ·] denotes con-

catenation, σ(·) is the sigmoid activation, hd,t
i = (1− zd,ti )�

hd,t−1
i + zd,ti � h̃d,t

i , h̃d,t
i = tanh(Wh̃ · [rd,ti � hd,t−1

i ,Pd
t,:]),

and zd,ti = σ(Wz · [hd,t−1
i ,Pd

t,:]). Note that rd,ti , zd,ti ∈ (0, 1)
are gates that control how much of past and present information
to be retained, and Wr,Wz,Wh̃ are learnable weights shared
across all steps. For step t = 0, we use a zero-initialized input
hidden state.

The path representation hd
i at the d-th dimension is obtained

from the final step hidden state hd,τ
i via a linear transformation:

hd
i = Wo · hd,τ

i + bo. Concatenating the path representations
at all D dimensions and passing it through a fully-connected
layer gives the final path embedding epathTi ∈ R

de for task Ti:

epathTi = FC
(
[h1

i , . . .,h
D
i ]�

)
. (5)

Inspired by [16], [25], [26], we handle task heterogeneity
without jeopardizing generalization among similar tasks by
employing a simple yet effective soft K-means clustering on
the path embeddings.2 Specifically, we maintain kpath learnable
cluster centroids {apathj |∀j ∈ [1, kpath]} ∈ R

kpath×de for path

embeddings. The cluster-enhanced path embedding ẽpathTi ∈

1Other network designs are possible for the meta path learner. We compare
their efficacy in ablation study.

2Other clustering methods are possible. We leave it to future work.
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R
de is the weighted sum of the cluster centroids:

ẽpathTi =

kpath∑
j=1

qpathij apathj , (6)

where qpathij =
(1+||epath

Ti
−apath

j ||2)−1

∑
j′ (1+||epath

Ti
−apath

j′ ||2)−1
is the probability of

assigning epathTi to cluster j, computed using the Student’s t
-distribution as a kernel, following [46].

B. Task Representation Based on Features

Task representation based on learning path can be interpreted
as encoding the conditional distribution3 pθ(y|x), whereas task
is best described by the joint distribution p(x, y) = pθ(y|x)p(x).
Therefore, we further incorporate the marginal distribution of
input features p(x) by learning another representation solely
based on features, as what has been done in most of the existing
task-aware meta-learning methods [15], [17], [24], [26]. Another
significance of including feature-based representation is that we
can create a mapping between the path and feature cluster as-
signments to bypass the rehearsed learning during meta-testing
(details will be elaborated in Section IV-D).

Generally, the design of the feature extractor may vary for
different application domains. Let E(·) denote an arbitrary fea-
ture extractor, the feature embedding efeatTi ∈ R

de for task Ti is
obtained by aggregating the extracted features of all samples in
the training set:

efeatTi =
1

ntrTi

ntr
Ti∑

j=1

(E(xi,j)). (7)

Similar to the path embeddings, we also employ a soft
K-means clustering to promote generalization among related
feature embeddings. Specifically, given kfeat cluster centroids
{afeatj |∀j ∈ [1, kfeat]} ∈ R

kfeat×de , the cluster-enhanced fea-

ture embedding ẽfeatTi ∈ R
de is obtained by:

ẽfeatTi =

kfeat∑
j=1

qfeatij afeatj , (8)

where qfeatij =
(1+||efeat

Ti
−afeat

j ||2)−1

∑
j′ (1+||efeat

Ti
−afeat

j′ ||2)−1
is the probability of as-

signing efeatTi to cluster j.

C. Task-Aware Modulation

We aggregate the path and feature embeddings via a learnable
weight vector λ ∈ R

de to generate the final task representation.
This task representation will then be used to produce a modu-
lation to tailor the global initialization θ0 to specific task. The
modulated initialization θ0i for task Ti is obtained by:

θ0i = σ(W · (λẽpathTi ⊕ (1− λ)ẽfeatTi ) + b)� θ0, (9)

3See Appendix A, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2023.3250323,
for a detailed explanation of this.

where λ, W, b are learnable parameters, σ(·) is the sigmoid
function, ⊕ and � denote element-wise addition and multipli-
cation respectively.

From this modulated initialization, task Ti will undergo reg-
ular task adaptation learning for τ steps. After that, the meta-
learner φ will be updated by optimizing loss across all the test
sets, the same procedure as in MAML. The meta-optimization
objective is:

min
φ

∑
Ti∈Ttr

L
(
fθ0i−α

∑τ−1
t=0 �θL(fθtTi

,Dtr
Ti

),Dte
Ti

)
, (10)

where φ includes all the meta-learned parameters: the global
initialization of the base-learner θ0, the meta path learner
{Wr,Wz,Wh̃,Wo,bo}, the feature extractor E(·), the path

and feature cluster centroids {apathj }kpath

j=1 and {afeatj }kfeat

j=1 , and
the final modulation {λ,W,b}.

D. Improving Meta-Testing Efficiency Via Shortcut

The need to conduct rehearsed learning before the actual
learning of each task inevitably leads to twice the inference
time compared to the vanilla MAML. Though it is not possible
to bypass the rehearsed learning during meta-training, it is
possible to improve the inference efficiency during meta-testing
with the well-trained cluster centroids. Note that the cluster-
enhanced path embedding ẽpathTi used to generate the modulation
is obtained solely based on the path cluster centroids and the
soft assignment (see (6)). Hence, if we can estimate the path
cluster assignment without actually going through the rehearsed
learning process, we will be able to cut the inference time by
half.

Inspired by this, we devise a shortcut tunnel to predict the path
cluster assignment directly from the feature cluster assignment
of the same task. The assumption behind is that there exists a
relation between the two that can be captured by a mapping
function. Imagine an extreme case where two tasks having the
exact same feature assignment (i.e., exact same feature embed-
ding), they most probably consist of the same set of samples
(e.g., the images), which should correspond to only one set of
labels. This will lead to the same learning path and hence, the
same path assignment.

Hence, most of the time, similar feature assignments should
also correspond to similar path assignments. However, it is
possible that the converse may occur, where two tasks with very
similar feature embeddings (i.e., the visual features of the images
from the two tasks are very similar) are actually drawn from
different classes. In that case, the two tasks will be clustered
closely in the feature representation space, but positioned far
apart in the path representation space. The mapping function is
expected to capture this complex relationship and incorporate
the new information brought by the paths simply inferring from
the corresponding feature assignments.

The mapping between the feature and path cluster assign-
ments can be linear or non-linear. For better expressivity, we
employ a two-layer fully connected network to approximate the
mapping. The reconstruction of the path assignment from the
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Algorithm 1: Meta-Training of CTML.

feature assignment of Ti is as follows:

q̂path
i = softmax(FCs(qfeat

i )), (11)

where qfeat
i = [qfeati1 , . . ., qfeatikfeat

]� ∈ R
kfeat and q̂path

i =

[q̂pathi1 , . . ., q̂pathikpath
]� ∈ R

kpath . The mapping allows for cases
where kpath �= kfeat.

To align the reconstructed and the actual assignment distri-
butions, we use the Jensen-Shannon (JS) divergence (a sym-
metrized version of Kullback-Leibler (KL) divergence) as the
reconstruction loss:

Lr(Dtr
Ti ) = JS(q̂path

i ||qpath
i ) =

1

2
KL(q̂path

i ||pi)

+
1

2
KL(qpath

i ||pi),

where pi =
1
2 (q̂

path
i + qpath

i ), and KL(q||p) =
∑
j

qj log
qj
pj

is

the KL divergence.
During meta-training, the reconstruction loss is optimized

together with the loss in (10), resulting in the following overall
objective:

min
φ

∑
Ti∈Ttr

L(f
θ0i−α

τ−1∑

t=0
�θL(fθtTi

,Dtr
Ti

)
,Dte

Ti) + ζLr(Dtr
Ti ),

where ζ controls the weight of Lr(Dtr
Ti ), and φ now further

includes the shortcut tunnel parameters.
To apply the shortcut tunnel during meta-testing, we simply

replace qpath
i with q̂path

i in (6) to obtain the cluster-enhanced

path embedding, i.e., ẽpathTi =
∑kpath

j=1 q̂pathij apathj . The overall
meta-training and meta-testing procedures of CTML are sum-
marized in Algorithms 1 and 2.

V. EXPERIMENTS

We conduct experiments on two application domains: few-
shot image classification and cold-start recommendation.

A. Few-Shot Image Classification

In few-shot image classification, each task is defined as as-
signing images to N classes after training with K samples (i.e.,
N -wayK-shot) [2]. To simulate task heterogeneity, we construct

Algorithm 2: Meta-Testing of CTML.

a Mixture-of-Datasets consisting of 6 widely used datasets:
CUB-200-2011 (Bird) [47], FGVC-Aircraft (Aircraft) [48],
FGVCx-Fungi (Fungi) [49], VGG Flower (Flower) [50], De-
scribable Textures (Texture) [51], and GTSRB Traffic Signs
(Traffic Sign) [52]. Following [24], we create each task by
sampling N classes from one of the 6 sub-datasets, such that
tasks are drawn from different underlying distributions.

To facilitate comparisons with the existing meta-learning
methods, we also conduct experiments on some common bench-
marks. For task-homogeneous setting, we conduct experiments
on 3 popular few-shot benchmarks: miniImageNet [7], tiered-
ImageNet [53] and CIFAR-FS [54], where for each experiment,
tasks are drawn from only one underlying distribution. We adopt
the pipeline of TSA-MAML [27] to conduct experiments on
these 3 datasets.4

For task-heterogeneous setting, we test our method on Meta-
Dataset [55], a recently introduced large-scale benchmark con-
sisting of 10 sub-datasets. This benchmark simulates a realistic
setting by constructing tasks with variable number of ways
(i.e., ranging from 5 to 50). Apart from being more challeng-
ing, this strategy also makes the benchmark less suitable for
MAML-based methods, as without knowing the number of
ways in advance, the initialization of the final classification
layer cannot be meta-learned during the meta-training phase
and this seriously affects the performance of the MAML-based
methods. According to [55], in order to implement MAML-
based methods on Meta-Dataset, the final classification layer is
either zero-initialized (i.e., fo-MAML) or constructed manually
from the prototypes (i.e., fo-Proto-MAML). More details will
be discussed in Section V-A5. Adopting their strategies, we
apply CTML on top of fo-MAML and fo-Proto-MAML on
Meta-Dataset to test its effectiveness even with this unfavorable
condition. We adopt the data pipeline of Meta-Dataset5 to test
CTML.

More details on data pre-processing and meta-
train/validation/test splits are included in Appendix B.1.,
available in the online supplemental material.

1) Baselines and Our Method: We compare the perfor-
mance of CTML against 9 other MAML-based methods with

4https://github.com/Carbonaraa/TSA-MAML
5https://github.com/google-research/meta-dataset
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TABLE I
FEW-SHOT CLASSIFICATION PERFORMANCE OF MAML-BASED METHODS ON MIXTURE-OF-DATASETS WITH CONV-4 AS THE BACKBONE. WE SAMPLED 1000
TASKS FOR META-TESTING. THE RESULTS ARE REPORTED IN THE FORM OF MEAN ACCURACY (%) ± STD OVER 8 TRIALS. WE ALSO REPORT THE INFERENCE

TIME (IN MILLISECONDS) PER TASK FOR THE 5-WAY 1-SHOT SCENARIO DURING META-TESTING (THE INFERENCE TIME FOR THE 5-SHOT SCENARIO IS AROUND

THE SAME AS THE 1-SHOT SCENARIO, HENCE OMITTED FROM THE TABLE)

different task-conditioning techniques: (1) common initializa-
tion method: MAML [5]; (2) task-adaptive initialization meth-
ods: MMAML (feature-based customization) [17] and L2F
(gradient-based customization) [30]; (3) cluster-enhanced ini-
tialization methods: HSML (feature-based hierarchical clus-
tering) [24], ARML (feature-based relational graph) [15] and
TSA-MAML (optimization-based K-means clustering) [27]; (4)
task-adaptive inner update methods: ModGrad (preconditioning
on the inner gradients) [34], ALFA (meta-learning the inner
update rule) [35] and MeTAL (meta-learning the inner loss
function) [36]. For our proposed CTML, we report both the
original meta-testing performance (CTML) and the one with
shortcut approximation (CTML(approx.)). We further imple-
ment 2 variants to compare with the baselines: CTML-feat which
only uses features for task representation and CTML-path which
only uses path for task representation. Following [5], we adopt a
4-layer 3× 3 convolutions with 32 filters (referred to as Conv-4)
for both the feature extractor E(·) and the base-learner fθ for all
the methods.

It was shown recently that, with a deeper backbone, the simple
training paradigm of pre-training + fine-tuning can achieve very
competitive performance [56], [57]. Hence, we further conduct
experiments on ResNet-12 to compare our method against 3
non-MAML-based baselines: (1) Finetune: A method that sim-
ply pre-trains a feature extractor on the entire training dataset and
then finetunes the classifier for each task; (2) Finetune-cosine:
A modification of Finetune which employs cosine distance be-
tween the feature vector and the class vectors [57]; (3) Finetune-
distill: A modification of Finetune that employs sequential self-
distillation to improve the pre-training of feature extractor [56].

We follow [58] for the ResNet-12 implementation, which adopts
(64-128-256-512) for the number of filters at the 4 blocks.

For the MAML-based methods, we follow the hyper-
parameters settings in MAML [5], where the adaptation learning
rate α is set to be 0.01, the meta-update learning rate β is 0.001,
the number of adaptation steps τ is 5, the meta batch size |B|
is 4, and the size of test set |Dte

Ti | is 15. The number of meta-
update iterations is set to be 60,000 for Mixture-of-Datasets and
miniImageNet, 80,000 for tieredImageNet and Meta-Dataset,
and 40,000 for CIFAR-FS. More details on hyper-parameters
settings can be found in Appendix C.1, available in the online
supplemental material.

2) Results on Mixture-of-Datasets: Table I presents the few-
shot classification performance of the MAML-based meth-
ods on Mixture-of-Datasets. First, we see that all the task-
adaptive methods outperform the vanilla MAML in this task-
heterogeneous setting. L2F with gradient-based conditioning
performs better than the feature-based MMAML. After consid-
ering generalization across similar tasks with some clustering
techniques, HSML and ARML further improve over MMAML.
TSA-MAML which uses the adapted model as task represen-
tation for clustering emerges as the strongest baseline in the
5-shot scenario. For the task-adaptive inner update methods
(i.e., ModGrad, ALFA, MeTAL), their performance is only
slightly better than L2F, which simply adjusts the initializa-
tion based on task gradients, demonstrating the importance of
adapting the initialization as opposed to the subsequent update
steps. For our proposed CTML, CTML-feat with K-means
clustering on features exhibits comparable performance as
HSML and ARML. For CTML-path, the improvements over the
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TABLE II
FEW-SHOT CLASSIFICATION PERFORMANCE (MEAN ACCURACY (%) ± STD

OVER 8 TRIALS) INCLUDING THE NON-MAML-BASED BASELINES FOR TWO

BACKBONES: CONV-4 AND RESNET-12

feature-based baselines are more significant, especially for the
5-shot scenario where the learning path becomes more reliable
with more training data for each task. The final CTML com-
bining the benefits of both the feature and path representations
achieves further improvements and outperforms the strongest
baselines (ARML for 1-shot and TSA-MAML for 5-shot) by a
significant margin.6

Due to the additional rehearsed learning, the meta-testing time
of CTML and CTML-path is about twice that of the baselines
(except for TSA-MAML, which also requires performing the
adaptation twice for task representation). After applying the
shortcut approximation, we are able to cut the inference time
of CTML by half with just a small compromise on performance.
Note that for ModGrad, ALFA and MeTAL, since they require
additional procedures at each inner step, their extra time costs
increase linearly with the number of inner steps, while for the
other methods that only focus on the initialization, the extra time
cost is fixed.

Table II presents the few-shot classification performance
including the non-MAML-based baselines on Mixture-of-
Datasets7 for 2 backbones: Conv-4 and ResNet-12. We can see
that for ResNet-12, the Finetune methods outperform MAML
for both scenarios. This may be due to that the deeper model
has a larger capacity to accommodate the transferable knowl-
edge obtained from pre-training. Nevertheless, the task-adaptive
MAML-based methods still yield better performance than the
Finetune methods for ResNet-12, demonstrating the effective-
ness of task-conditioning on a deeper backbone under the task-
heterogeneous setting. Our method incorporating the path rep-
resentation yields the best result. Besides, we note that a major
drawback of the Finetune methods is that they often require a
large number of steps to adapt the classifier to new tasks (i.e.,
the fine-tuning phase). In our experiments, it was found that the

6Based on t-test, the improvements of CTML over all the baselines are
considered significant at a level of 0.025

7Due to the limit of space, the performance of individual sub-datasets is
omitted from Tables II and III

TABLE III
FEW-SHOT CLASSIFICATION PERFORMANCE (MEAN ACCURACY (%) ± STD

OVER 8 TRIALS) OF VARIANTS OF CTML

Finetune methods generally take more than 200 steps to converge
for task adaptation, while for the MAML-based methods, only
a few steps will suffice (within 10 steps). This phenomenon was
also revealed in [55].

3) Ablation Study: We further conduct an ablation study on
the Mixture-of-Datasets to test the efficacy of various CTML
designs: the 4 step-wise input components, the GRU path learner
design, and task clustering. Table III presents the results of
different variants. First of all, we see that the lower-order com-
ponents like θ̃tTi and L̃t

Ti seem to be more important than their
higher-order counterparts. Second, to test the effectiveness of
different path learner designs, we introduce 3 other design alter-
natives: a linear network, a non-linear fully-connected network,
and an attention-based network. Detailed formulation of the 3
network designs can be found in Appendix D, available in the
online supplemental material. From the results, we see that our
proposed CTML with GRU path learner performs the best. This
can be attributed to the ability of GRU to capture the sequential
dependencies among the steps. Attention-based model is also a
competitive candidate, as the positional encodings and the causal
mask serve to inform about the sequential order. Lastly, we see
that task clustering indeed helps boost performance, demonstrat-
ing the importance of explicitly considering the global structure
for better generalization.

4) Visualization of Learning Paths: To understand the path
learning mechanism, we randomly sample 2 meta-test tasks
(5-way 1-shot) from each of the Aircraft, Flower, and Traffic
Sign sub-datasets. The sampled tasks are shown in Fig. 3(a). In
Fig. 3(b), we plot the 5-step rehearsed learning paths of these
tasks and the corresponding path embeddings generated by the
GRU path learner. We see that the learning paths of tasks from
the same sub-dataset generally move along the same direction,
and the corresponding path embeddings are able to encode this
information and positioned closely for similar paths in the latent
space. In Fig. 3(c), we further visualize the z and r gates produced
by GRU at each rehearsed step t, controlling how much to retain
for the current step and how much to retain for the previous step
respectively. We can see that the GRU path learner is able to
identify the “important” steps (darker-blue z gate blocks) and
absorbs a larger portion of the inputs at these steps into the final
embedding.
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Fig. 3. Visualization of learning paths. (a) 6 meta-test tasks (5-way 1-shot) randomly sampled from the Aircraft, Flower, and Traffic Sign sub-datasets.
(b) PCA visualization (on the first two principal components) of the 5-step rehearsed learning paths (upper subplot) and the corresponding path embeddings (lower
subplot) for the 6 tasks. (c) Visualization of z gate (how much to retain for the current step input) and r gate (how much to retain for the previous step memory) of
GRU at each rehearsed step t for the 6 tasks. (d)-(f) PCA visualization of the modulated initializations and the 5-step actual learning paths for the 6 tasks generated
by CTML-feat, CTML and CTML(approx.) respectively. The initial point of the path in each mini-plot is indicated by the ”black star”. (g)-(i) Visualization of task
modulation on 4 randomly selected filters (size of 3× 3) from the 4 convolutional blocks and the final read-out layer (size of 800× 5) for the first task (i.e., blue
circle task) generated by CTML-feat, CTML, and CTML(approx.) respectively.

From Fig. 3(d) to (f), we plot the actual learning paths of the 6
tasks with initializations modulated by CTML-feat, CTML and
CTML(approx.) respectively. Since the distance spanned by the
actual learning paths is much shorter than the separation between
the modulated initializations, we zoom in for each task (to the
same scale for all the tasks in all the plots for easier comparisons)
to visualize the actual learning paths. The initial point of the
path in each mini-plot is indicated by the ”black star”. First,
we see that the initializations of CTML exhibit a finer clustering
pattern than CTML-feat, signifying the benefits of incorporating
the path information. Second, CTML(approx.) produces very
similar modulated initializations and actual learning paths as
CTML, showing the efficacy of the shortcut approximation.
In Fig. 3(g) to (i), we extract the modulations on 4 randomly
selected filters (size of 3× 3) and the final read-out layer (size
of 800× 5) for the first task (i.e., blue circle task). It is evident

that the task modulation of CTML(approx.) highly resembles
that of CTML, while CTML-feat produces a rather different task
modulation from the other two. More visualization examples can
be found in Appendix E.1, available in the online supplemental
material.

5) Results on Public Benchmarks: Task-Homogeneous
Benchmarks We further conduct experiments to compare
the MAML-based methods on miniImageNet [7], tieredIma-
geNet [53] and CIFAR-FS [54], which are public benchmarks
following task-homogeneous setting. In this section, we further
include the more challenging 10-way 1-shot scenario follow-
ing [27]. From Table IV, we see that the improvements of the
task-adaptive methods over the common initialization methods
(i.e., MAML, fo-MAML, Reptile) are less significant here as
compared to those on Mixture-of-Datasets (Table I). Never-
theless, even under this task-homogeneous setting where the
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TABLE IV
FEW-SHOT CLASSIFICATION PERFORMANCE OF MAML-BASED METHODS ON MINIIMAGENET, TIEREDIMAGENET, AND CIFAR-FS. THE RESULTS ARE REPORTED

IN THE FORM OF 95% CONFIDENCE INTERVAL OF ACCURACY (%) BASED ON 600 META-TESTING TASKS. ALL RESULTS ARE ADOPTED DIRECTLY FROM [27],
EXCEPT FOR THOSE DENOTED WITH *, WHICH ARE OBTAINED FROM OUR REPRODUCTION

TABLE V
PERFORMANCE ON META-DATASET IN THE FORM OF 95% CONFIDENCE

INTERVAL OF ACCURACY (%) FOR FO-MAML AND FO-PROTO-MAML BEFORE

AND AFTER APPLYING CTML. MODELS ARE TRAINED ON THE FIRST 8
SUB-DATASETS AND TESTED ON THE META-TEST SPLITS OF ALL THE 10

SUB-DATASETS. COMPARISONS WITH THE STATE-OF-THE-ART METHODS CAN

BE FOUND IN APPENDIX E.3, AVAILABLE IN THE ONLINE SUPPLEMENTAL

MATERIAL

advantages of task-conditioning are rendered less prominent,
our proposed CTML still emerges as a strong candidate among
the state-of-the-art MAML-based methods, achieving the best
performance in 6 out of 9 scenarios.

Task-Heterogeneous Benchmark. Meta-Dataset [55] is
recently introduced to simulate the more realistic task-
heterogeneous setting. This benchmark involves 10 sub-
datasets, where the model is trained on 8 sub-datasets and
tested on all 10 sub-datasets to enable both in-distribution
and out-distribution evaluations. Though it is a less suitable
benchmark for evaluating MAML-based methods (for the reason
mentioned earlier), to have a rough idea of how CTML is
positioned among the state-of-the-art meta-learning methods on
this task-heterogeneous benchmark, we apply CTML on top of
fo-MAML and fo-Proto-MAML proposed in [55]. That is, we
do not meta-learn the initialization of the classification layer and
only meta-learn the modulation on the initialization obtained by
fo-MAML or fo-Proto-MAML.

Table V shows the results of fo-MAML and fo-Proto-MAML
before and after applying CTML. We see that for both cases,
applying CTML significantly boosts the model performance,
demonstrating its effectiveness in this challenging setup where
the classification layer cannot be meta-learned. In Appendix E.3,

available in the online supplemental material, we include a table
to compare fo-Proto-MAML + CTML (in short, Proto-CTML)
with 8 latest state-of-the-art methods on Meta-Dataset. Proto-
CTML emerges as the third among these strong candidates.

B. Cold-Start Recommendation

In the field of recommender systems, meta-learning has been
applied to solve the cold-start problem, which refers to making
recommendations related to new items or new users [59], [60],
[61]. Here, we focus on the user cold-start problem, where
making recommendations for each user is treated as a task.
This setting is task-heterogeneous in nature as users may belong
to different preference groups. We conduct experiments on 3
public benchmark datasets: MovieLens-1M [62], Yelp [63],
and Amazon-CDs [64], consisting of user ratings on movies,
business services, and CD products respectively. We split each
dataset into meta-train/validation/test by a ratio of 7/1/2 accord-
ing to the timestamps of ratings. Note that it is possible for
meta-train users to appear in meta-validation and meta-test sets,
we refer to these users as warm users, and those have never
appeared in the meta-train set as cold users. For each user, we
use the first 10 samples as the training set (i.e., support set),
and the rest as the test set (i.e., query set). More details about
datasets can be found in Appendix B.2, available in the online
supplemental material.

1) Baselines and Our Method: We choose four baselines that
specifically tackle the user cold-start problem in recommender
systems developed based on MAML. MeLU [61] is the first to
adopt MAML in recommender systems with locally adapted
decision layers; MetaHIN [65] is a MAML-based method
that further incorporates Heterogeneous Information Networks
(HIN) for data augmentation and multi-faceted adaptations;
MAMO [25] involves a global memory module to group users
based on profile information and personalizes the initial bias;
PAML [66] personalizes the adaptation learning rate to allow
for better fitting of the minor users. Following the baselines,
we implement the feature extractor E(·) as several embedding
lookup matrices for different features, and the base-learner fθ
as a general recommender system model consists of an embed-
ding layer followed by multiple fully-connected layers (i.e., the
decision layers) [61].
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TABLE VI
RECOMMENDATION PERFORMANCE ON 3 DATASETS IN MAE AND NDCG@20.
WE REPORT THE MEAN OVER 5 TRIALS, WHERE THE STD DEVS ARE ALL LESS

THAN 0.001. APPENDIX E.4, AVAILABLE IN THE ONLINE SUPPLEMENTAL

MATERIAL, INCLUDES THE FULL DISENTANGLED RESULTS FOR WARM & COLD

USERS

For all the compared methods, we follow the hyper-
parameters settings in MeLU [61], where the adaptation learning
rate α is set to be 5e-3, the meta-update learning rate β is 5e-5,
the number of adaptation steps τ is 5, and the number of meta-
training epochs as 20. Detailed hyper-parameters settings can
be found in Appendix C.2, available in the online supplemental
material.

2) Results: We evaluate the recommendation performance
of different methods in terms of two metrics: (1) Mean Abso-
lute Error (MAE): A measure of rating prediction errors; (2)
Normalized Discounted Cumulative Gain (NDCG): A measure
of ranking quality based on the predicted ratings. NDCG is
computed at the top 20 items in the predicted ranking (termed
NDCG@20). Note that smaller MAE and larger NDCG@20
indicate better performance.

From the results in Table VI, we can see that PAML and
MAMO with personalized adaptation rate and initialization
achieve better performance than MELU. Our CTML surpasses
all the baselines, including MetaHIN which leverages HIN for
data augmentation. Furthermore, we notice that even CTML-
path is able to outperform all the baselines by a significant
margin. This suggests that the learning process of users toward
better prediction can be more useful than the profile features in
terms of representing user preference. Further including features
on top of learning path representations results in marginal im-
provements (compare CTML-path with CTML). This finding is
meaningful as in reality, user profile information may not always
be available. Learning from learning path becomes a promising
alternative for user representation to address the cold-start prob-
lem when the side information is seriously lacking or inaccurate.

3) Number of Clusters: For recommendation problem, there
is no ground-truth grouping of users. In Fig. 4(a), we investigate
the effect of varying the number of clusters kpath and kfeat
for MovieLens-1 M dataset. We see that the best performance
occurs at smaller kfeat values and larger kpath values, which
implies greater complexity for clustering the learning paths.

Fig. 4. (a) Effect of varying kfeat and kpath for MovieLens-1 M. (b)-(c)
Shortcut approximation for 2 users randomly sampled from MovieLens-1 M
(kfeat = 8 and kpath = 16).

4) Shortcut Approximation: Our design of the shortcut tun-
nel allows flexibility to map between different numbers of
clusters (i.e., kpath �= kfeat). In Fig. 4, we visualize the shortcut
approximation of path assignment (over 16 clusters) from feature
assignment (over 8 clusters) for 2 users randomly sampled
from the MovieLens-1 M dataset. We can see that the shortcut
tunnel is rather reliable as the reconstructed path assignment
highly resembles the actual path assignment. More examples
of few-shot image classification are provided in Appendix E.2,
available in the online supplemental material.

VI. CONCLUSION

In this work, we introduce a CTML framework that leverages
both features and learning path to enhance the task representa-
tion. A GRU-based meta path learner is employed to automati-
cally extract the relevant knowledge from path and generate the
path representation. To speed up the inference process, we intro-
duce a shortcut tunnel to bypass the rehearsed learning during
meta-testing. Extensive experiments demonstrate the effective-
ness of CTML. In the future, we will extend the framework to
other meta-learning algorithms and explore different designs of
meta path learner to further improve the effectiveness of path
modeling.
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